Diferencia entre revisiones de «Matrices de confusión y otros valores estadí­sticos»

De Grupo de Inteligencia Computacional (GIC)
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
== '''Introducción''' ==
== '''Introducción''' ==


Línea 8: Línea 7:
El trabajo en el que se basa esta página es sobre evaluación de algunos resultados de segmentación de imágenes de resonancia magnética, entonces oiréis hablar sobre vóxeles, aunque estos coeficientes son aplicables a otras materias.
El trabajo en el que se basa esta página es sobre evaluación de algunos resultados de segmentación de imágenes de resonancia magnética, entonces oiréis hablar sobre vóxeles, aunque estos coeficientes son aplicables a otras materias.


---------------------------




Línea 27: Línea 24:




----------




Línea 63: Línea 59:




-----




Línea 80: Línea 75:
where sum_c means the sum over all different classes.
where sum_c means the sum over all different classes.


-----------------------------




Línea 93: Línea 86:




-----------------------------
== '''Autores:''' ==
 


Resumen hecho por Alexandre Savio de una comunicación por correo electrónico con Manuel Graña, Maite García-Sebastián, Jean-Luc Lor y Charlotte Rosak
Resumen hecho por Alexandre Savio de una comunicación por correo electrónico con Manuel Graña, Maite García-Sebastián, Jean-Luc Lor y Charlotte Rosak


Cualquier añadido, correción o comentario será bienvenido.
Cualquier añadido, correción o comentario será bienvenido.

Revisión del 14:52 21 jul 2008

Introducción

Hemos realizado esta página para resumir y concretar algunos coeficientes estadísticos que siempre aparecen en muchos de nuestros experimentos. Estos coeficientes nos ayudan a medir la calidad de nuestros resultados al compararlos con la verdad del terreno.

El trabajo en el que se basa esta página es sobre evaluación de algunos resultados de segmentación de imágenes de resonancia magnética, entonces oiréis hablar sobre vóxeles, aunque estos coeficientes son aplicables a otras materias.



Definiciones

N = número de vóxeles de las imágenes.

La matriz de contingencia donde las filas corresponden a la verdad del terreno y las columnas a los resultados:

TP FP

FN TN

En muchas referencias las columnas corresponden a la verdad del terreno y las filas a los resultados, entonces la matriz de contingencia es la traspuesta de la descrita arriba.



Coeficientes

En principio tenemos que: TP + FP + FN + TN = N


Misclassification Ratio: MCR = (FP + FN) / N


The Jaccard Similarity: Jaccard = TP / (TP + FN + FP)


True Positive Fraction and Sensitivity: TPF = TP / (TP + FN) = sensitivity

Esta puede ser multiplicada por 100 para expresarlo como un porcentaje.


False Positive Fraction and Specificity FPF = FN / (FN + TN) = 1 - specificity

Esta puede ser multiplicada por 100 para expresarlo como un porcentaje.


Specificity: specificity = TN / (FN + TN)


Segmentation Accuracy : SA = (TP + TN) / N (x 100)


Mean Error = (FP + FN) / N



Note:

The difference between ratio and fraction in the literature seems to be that the ratio is a value between 0 and 1, while the fraction seems to be a percentage (ratio x 100).

The ASR is only meaningful when we are dealing with multiple class problems: Gray Matter, White Matter and CSF. Then we will have specific contigency matrices, one for each class of the problem. So, in our problem we have three contingency matrices, one for each brain tissue class:

TP_c, FP_c, TN_c, FN_c, N_c where c = GM, WM or CSF

Then, ASR = (sum_c TP_c) / (sum_c (TP_c + FP_c ))

where sum_c means the sum over all different classes.



Otras referencias:

http://en.wikipedia.org/wiki/True_positive

http://en.wikipedia.org/wiki/Receiver_operating_characteristic


Autores:

Resumen hecho por Alexandre Savio de una comunicación por correo electrónico con Manuel Graña, Maite García-Sebastián, Jean-Luc Lor y Charlotte Rosak

Cualquier añadido, correción o comentario será bienvenido.