Diferencia entre revisiones de «GIC-experimental-databases/OASIS VBM feature vectors»

De Grupo de Inteligencia Computacional (GIC)
Sin resumen de edición
Sin resumen de edición
 
Línea 32: Línea 32:




;; Reference:
;; References:


:A. Savio, M.T. García-Sebastián, D. Chyzyk, C. Hernandez, M. Graña, A. Sistiaga, A. López de Munain, J. Villanúa,  
:A. Savio, M.T. García-Sebastián, D. Chyzyk, C. Hernandez, M. Graña, A. Sistiaga, A. López de Munain, J. Villanúa,  
Línea 39: Línea 39:
:(http://www.sciencedirect.com/science/article/pii/S0010482511001065)
:(http://www.sciencedirect.com/science/article/pii/S0010482511001065)
:Keywords: Alzheimer's disease; Classification; Feature extraction; Structural MRI; Myotonic distrophy of type 1
:Keywords: Alzheimer's disease; Classification; Feature extraction; Structural MRI; Myotonic distrophy of type 1
;Darya Chyzhyk, Alexandre Savio, Manuel Graña,
:Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI pdf
:Neurocomputing, Volume 128, 27 March 2014, Pages 73-80,
:ISSN 0925-2312, http://dx.doi.org/10.1016/j.neucom.2013.01.065.

Revisión actual - 21:28 29 abr 2016


Experimental database of features obtained from the VBM of a subset of the OASIS database for the classification of Alzheimer's Disease patients versus controls

Experimental database of features obtained from the VBM of a subset of the OASIS database for the classification of Alzheimer's Disease patients versus controls with example source code

 CONTROLES is the raw data of the control subjects, they have label -1
 PACIENTES is the raw data of the patient subjects, they have label 1

If you read the first lines of Diverse_AdaBoost_LVQ_MeanAndStdDev.m you will see that I call the function that I am attaching (extractMeanAndStdDevFromEachCluster.m).

These data are grey matter segmentations as you can see with, e.g.,:

 imshow (reshape(PACIENTES(1,60,:,:),91, 91), [min(min(PACIENTES(1,60,:,:))) max(max(PACIENTES(1,60,:,:)))])

female_crystal_brain_cov0 are corrected p-values of a typical statistical test in with anatomical brain MRI in neuroscience called Voxel-based morphometry (VBM).

To use them the same way you used the previous dataset, please use one of the functions I attached in this way:

 [C P] = extractVoxelIntensitiesWithinClusters (female_crystal_brain_cov0, CONTROLES, PACIENTES);

Where C are the controls voxels within the VBM clusters and P the patients ones.

Otherwise, if you don't want to use the VBM result you could perform another feature extraction of yourself directly on CONTROLES and PACIENTES. I imagine you would have to reshape it, flattening their 2nd, 3rd and 4th dimesions into one.


Other files of interest
Matlab source and subjects_list.txt
List of 98 OASIS females


References
A. Savio, M.T. García-Sebastián, D. Chyzyk, C. Hernandez, M. Graña, A. Sistiaga, A. López de Munain, J. Villanúa,
Neurocognitive disorder detection based on feature vectors extracted from VBM analysis of structural MRI
Computers in Biology and Medicine, Volume 41, Issue 8, August 2011, Pages 600-610, ISSN 0010-4825, http://dx.doi.org/10.1016/j.compbiomed.2011.05.010.
(http://www.sciencedirect.com/science/article/pii/S0010482511001065)
Keywords: Alzheimer's disease; Classification; Feature extraction; Structural MRI; Myotonic distrophy of type 1
Darya Chyzhyk, Alexandre Savio, Manuel Graña,
Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI pdf
Neurocomputing, Volume 128, 27 March 2014, Pages 73-80,
ISSN 0925-2312, http://dx.doi.org/10.1016/j.neucom.2013.01.065.