Gaia

XSLaren edukia

Teknologia Kuantikoak

Gaiari buruzko datu orokorrak

Modalitatea
Ikasgelakoa
Hizkuntza
Ingelesa

Irakasgaiaren azalpena eta testuingurua

This module covers the principles and practices of quantum simulation, an essential aspect of quantum technologies. Students will explore how quantum systems can be used to simulate complex physical systems that are challenging to model with classical computers. The course includes theoretical foundations, algorithmic techniques, and practical applications in various fields.

Irakasleak

IzenaErakundeaKategoriaDoktoreaIrakaskuntza-profilaArloaHelbide elektronikoa
BLANCO PILLADO, JOSE JUANEuskal Herriko UnibertsitateaIkerbaske BisitariaDoktoreaElebakarraFisika Teorikoajosejuan.blanco@ehu.eus
CASANOVA MARCOS, JORGEEuskal Herriko UnibertsitateaRamón Y Cajal IkertzaileaDoktoreaElebakarraArloa ez dago adierazita edo behin-behinekoa dajorge.casanova@ehu.eus
RICO ORTEGA, ENRIQUEEuskal Herriko UnibertsitateaIkerbaske BisitariaDoktoreaElebakarraKimika Fisikoaenrique.rico@ehu.eus

Gaitasunak

IzenaPisua
Problemak askatzea70.0 %
Gai teorikoen ezagutza eta aurkezteko gaitasuna15.0 %
Gai zerrendan esplizituki agertzen ez den kuestio baten aurkezteko gaitasuna15.0 %

Irakaskuntza motak

MotaIkasgelako orduakIkasgelaz kanpoko orduakOrduak guztira
Magistrala243256
Mintegia81220
Gelako p.81624

Ebaluazio-sistemak

IzenaGutxieneko ponderazioaGehieneko ponderazioa
Ahozko azterketa0.0 % 50.0 %
Azalpenak15.0 % 50.0 %
Garatu beharreko galderak15.0 % 70.0 %
Lan praktikoak50.0 % 50.0 %

Ohiko deialdia: orientazioak eta uko egitea

En caso de que las condiciones sanitarias impidan la realización de

una evaluación presencial, se activará una evaluación no presencial de

la que será informado el alumnado puntualmente.

Irakasgai-zerrenda

I. Quantum Simulation

- Introduction to Quantum Simulation: Overview of Quantum Technologies, Historical Background and Motivation for Quantum Simulations, Comparison with Classical Simulations

- Quantum Algorithms for Simulation, Hamiltonian Simulation, Trotter-Suzuki Decomposition, Variational Quantum Eigensolver (VQE), Quantum Phase Estimation, Quantum Monte Carlo Methods

- Physical Systems and Models, Quantum Many-Body Systems, Lattice Models (e.g., Hubbard Model), Spin Systems, Fermionic and Bosonic Systems

- Numerical Techniques and Implementation, Discretization and Approximation Methods, Error Mitigation and Noise Reduction, Software and Quantum Simulation Platforms (Qiskit, etc.)

- Case Studies and Practical Applications: Case Study: Simulating Material Properties, Case Study: Quantum Simulations in High Energy Physics, Practical Exercises Using Quantum Simulation Software

- Future Directions and Challenges, Scalability and Hardware Limitations, Advances in Quantum Algorithms, Emerging Applications and Interdisciplinary Approaches



II. NV centers, Trapped ions

- Quantum control. Two-level systems quantum control. The rotating wave approximation. Electron spin resonances. Coherent electron-nucleus couplings. The nitrogen vacancy center in diamond. Quantum sensing and polarization. Dynamical decoupling techniques.

- Quantum information processing.

Trapped ion systems. Laser-driven and microwave-driven setups. Controlled entanglement generation in trapped ions for quantum computing.

Bibliografia

Oinarrizko bibliografia

Part I.



Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.

Aspuru-Guzik, A., & Walther, P. (2012). Photonic quantum simulators. Nature Physics, 8, 285–291.

Georgescu, I. M., Ashhab, S., & Nori, F. (2014). Quantum simulation. Reviews of Modern Physics, 86(1), 153.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467–488.

Preskill, John. "Quantum Computing in the NISQ era and beyond." arXiv preprint arXiv:1806.06862 (2018).

Sanders, Ben H., et al. "Quantum simulation of complex materials." Nature Physics 16.12 (2020): 1303-1308.

Devoret, Michel H., et al. "Superconducting circuits for quantum information: An outlook." Science 339.6124 (2013): 161-166.



Part II.



Malcom H. Levitt, Spin dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2008).

Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology (2014).

Programmable quantum simulations of spin systems with trapped ions (2021).



XSLaren edukia

Iradokizunak eta eskaerak