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The Use of Predictive Dependencies in Language Learning

Jenny R. Saffran

University of Wisconsin—Madison

To what extent is linguistic structure learnable from statistical information in the input? This research investi-
gated the role played by statistical learning in the acquisition of rudimentary phrase structure. One type of statis-
tical cue which might assist in the discovery of hierarchical phrase structure given serially presented input is the
dependencies, or predictive relationships, present between form classes within phrases. In order to determin
whether learners can use this statistical information, adult and child participants were exposed to an artificial
language which contained predictive dependencies as a cue to phrase structure. The results suggest that hum:
possess statistical learning mechanisms which may assist in the acquisition of this abstract component of natur:
language. ©Academic Press 2001
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Research in nonlinguistic domains suggestle contingencies between their own motor move
that humans are adept at detecting the statisticaénts and a salient environmental event (e.g
relationships that characterize the environmerRovee-Collier, 1991). Three-month-old infants
For example, we acquire information about evertin discern the predictive structure in sequence
frequency across a broad range of natural aonfl visual stimuli, showing shorter fixations for
experimental situations and maintain that infoppredictable new stimuli (e.g., Canfield & Haith,
mation even when there is no reason to do 4891), and 10-month-old infants can learn arti-
(Hasher & Zacks, 1984; Hasher, Zacks, Rose, #cial categories defined only by correlations
Sanft, 1987). Such abilities to detect basic sthetween features (e.g., Younger, 1985).
tistical properties of the environment are not Despite these impressive computational abili-
limited to adults. For example, infants as yountjes, the relationship between statistical learning
as two months of age can detect and rememtadilities and the problems confronting language

learners is tenuous at best. For statistical prope
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ruchet & Vintner, 1998), and behavioral studieghino sipped the) (champagneYhe correct
suggest that humans, including infants, cagroupings reflect the phrase structure of Englisk
detect and use this statistical information (e.g., A key diagnostic for determining which
Aslin, Saffran, & Newport, 1998; Goodsitt,word sequences cohere as phrases is the distri
Morgan, & Kuhl, 1993; Saffran, Aslin, & New- utional behavior of grammatical categories.
port, 1996; Saffran, Newport, & Aslin, 1996). Phrases are marked by dependencies: a dete
While statistical cues may be useful for asminer such ashe requires a noun (forming a
pects of language which are tied to the surfac®un phrase), and a transitive verb requires a
properties of the input, such as word segmentebject noun phrase (forming a verb phrase)
tion, many other important properties of lanPhrases are also distributionally highlighted be:
guage are abstract. These aspects of linguistiguse the words that make up phrases move t
structure may not be obviously mirrored by thgether within and across sentences. Phras
surface structure of the input and thus might nttten interact to generate hierarchical structure
be discoverable by a statistical learning devideor example, the link betweehino andcham-
(e.g., Pinker, 1984). To the extent that this is thEagne in the example sentence above is ex:
case, discovery procedures based on statistitamely indirect.Rhing as part of the subject
learning will fail. It is thus of interest to asknoun phrase, is related to the verb phrase
whether statistical information is available tavhich in turn contains the noun phrase which
subserve the acquisition of abstract aspects afntainschampagneOther links are far more
language, notably syntax. While there are multdirect; for examplerhino is tightly linked to
ple proposals pertaining to the acquisition dhe determinerthe These nonuniform links
syntactic categories via statistical informatiocarry the hierarchical structure of the sentence
(e.g., Billman, 1989; Cartwright & Brent, 1997; While phrase structure is among the hall-
Maratsos & Chalkley, 1980; Mintz, 1996; Redmarks of natural languages, it is of interest tc
ington et al., 1998), it remains unclear whethatote that hierarchical organization is not unique
the input contains sufficient learnable statisticab language. Lashley (1951) observed that hier
information to point learners toward the abstraerchical organization characterizes an enormou
syntactic structure relating these categories. variety of behaviors: “the coordination of leg
movements in insects, the song of birds . . . an
the carpenter sawing a board present a problel
One abstract feature of human language whidfi sequences of action which cannot be ex
is commonly observed cross-linguistically iplained in terms of successions of external stim
nonlinear organization. Although words occudli” (p. 113). Hierarchical structure may be
serially, our representations of sentences congsesent across domains because systems whi
of phrases organized into hierarchical relatiorare highly organized are more learnable, an
ships, rather than flat, structureless, strings efsier to produce and process, than systen
words. This suggests an interesting learninghich are not—as long as the system of organi
problem: given serially ordered strings of wordgation is consistent with the user's cognitive
as input, how does hierarchical phrase structusructure. Such considerations suggest that tt
arise in learners’ representations? way that phrase structure works may facilitate
Phrase structure refers to the groupings of catis acquisition by language learners.
egories of words into constituents, which may Morgan and Newport have argued that lan-:
then themselves enter into new constituentguages possess cues that serve just this purpc
thereby generating hierarchically organize@Morgan, Meier, & Newport, 1987, 1989; Mor-
groupings of elements. For example, the wordgmn & Newport, 1981). Events at phrase bound
in the sentenceThe rhino sipped the cham-aries, such as prosodic cues and functors, ar
pagné fall into particular groupings:(The events underlining the unity of entities within
rhino) (sipped (the champagnelwould be ex- the phrase, such as concord morphology and s
tremely unnatural to group those words(@$ie) mantic structure, delimit the analyses that learn

Hierarchical Phrase Structure
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ers must perform to discover syntactic structureontain dependency-defined phrases? If on
On this view, nonsyntactic information correform class never occurs without another, ther
lated with syntactic structure serves to brackéhis predictiveness signals that the two classe
the input into phrases, facilitating learning.  are linked. This connection may be represente
Results from a series of experiments suggess membership in a single unit, such as a phras
that learners can only use distributional inforBecause form classes can predict one anoth
mation, such as dependencies, to acquire syntaithout being immediately adjacent, a learner
when additional correlated cues (e.g., semantttuned to predictive dependencies could, ir
or prosodic information) are available to delimiprinciple, detect relationships between form
the necessary statistical analyses (Morgan et @lasses when other material intervenes (as i
1987, 1989; Morgan & Newport, 1981). Thdypical in natural languages). Thus, the avalil-
fact that learners acquire phrase structure ordyility of dependencies in the input might lead
under certain conditions points to the types déarners to group form classes together intc
constraints which learners bring to bear on lirphrases, even in the absence of other cues cort
guistic input. On this view, natural languagefated with phrase boundaries.
may contain phrase bracketing devices such asThe initial discovery of the phrase has severa
prosody, function words, and concord morpholmportant ramifications. The first is that phrases
ogy in part because they facilitate language aserve as a foundation for representations the
quisition (see also Kelly & Martin, 1994). Whenextend beyond the serial nature of the input. Th
bracketing information is unavailable, the withinsecond related effect is that if one phrase typ
phrase dependencies that carry phrase structigeavailable, other dependencies emerge. Fc
may remain elusive. example, once noun phrases are discovered, tl
This conclusion raises an interesting possibikelationship between transitive verbs and ob.
ity: perhaps dependencigsemselveserve as a ject noun phrases, and prepositions and nou
statistical cue for the discovery of phrase boungshrases, becomes available. Interestingly, thes
aries. Dependencies remain unexplored as a cdependencies are unidirectional. While simple
for the discovery of phrasal units which may baleterminers such as and the require nouns,
otherwise unmarked in the input. If dependenaouns do not require determiners. Similarly,
cies, as purely statistical cues, facilitate acquisprepositions and transitive verbs require objec
tion, then perhaps learnability considerationsoun phrases, but noun phrases require neithi
may explain why languages possess this type pfepositions nor transitive verbs. Note that by
structural organization. focusing on predictiveness rather than simple
The configurational dependencies that undece-occurrence, spurious phrasal units may b
lie phrases have their roots in descriptions tvoided. For example, nearly all English sen-
structural linguists (e.g., Bloomfield, 1933; Hartences contain subject nouns and verbs. Thi
ris, 1951) and more recently have been codifiedight lead a learner to incorrectly posit that
in the X-bar theory of phrase structure, whichouns and verbs are linked as a phrase if cc
reflects commonalities of organization acrossccurrence is the relevant metric. However, fol
phrase types (e.g., Jackendoff, 1977). But theaelearner concerned with predictiveness, al
dependencies may also be defined statisticallyprd types equally predict the occurrence of
in terms of conditional probabilities computedubject nouns and verbs in sentences, since &
between form classes: giv&hwhat is the like- sentences contain those items. This differs fron
lihood of X? In English, the probability of a sim-phrasal dependencies in which certain worc
ple determiner such dke or a given a subse- types (e.g., determiners) predict other worc
guent noun is moderate. But given a simplgpes (e.g., nouns). We hypothesize that th
determiner, the probability that a noun willcritical dependencies emerge phrase-internally
occur later in the sentence is near unity. where quite specific predictive relationships
How might dependencies serve as a cue &e available for detection by learners attune
phrasal units, at least in those languages whith covariance.
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Predictive Dependencies and Other Cues Prior to addressing the issue of abstract verst
for Sequence Learning surface properties experimentally, it is important

In order for predictive dependencies to be ust clarify what is meant by the acquisition of ab-
ful for the acquisition of phrase structure, Iearr?—t_r"",Ct strugturg n Ianguage learning. In the im:
ers must be able to detect these cues amidst i€t leaming literature, this type of knowledge
iad additional information in the input, including'® ©ften measured by the extent to which learner
other surface statistical cues which are less refn ‘abstract away from the specific vocabulary
vant to grammatical structure. Notably, predictivHsed in the training set.” (Redington & Chater,
dependencies are not transparently mirrored #7926 P- 124) to recognize the underlying struc
the input; to use this type of cue, the learner mu&t'e of the input. The primary source of evidence
be able to discover form classes and then discdf; this type of abstraction has involved transfer
the patterns of form classes that demarcatédies, in which the degree to which learners
phrasal units. A central debate in the literature (S}?Ye acqwred ;tructure beyonq surfac_e pfOP
implicit learning processes revolves around ju§ti€s of strings is measured using test items i
this question: to what extent is performance dh New Vocabu'af}’ (e.g., Altmann, Dienes, &
artificial language learning tasks driven by sufeoode, 1995 Gomez & Schvaneveldt, 1994
face string and substring cues versus abstr&¥EPer, 1969; Shanks, Johnstone, & Staggs, 199
knowledge of the rules underlying the exposuf@ough see Tunney & Altmann, 1999). However,
strings? The results of numerous implicit learUr underlying knowledge of our native lan-
ing studies suggest that learners can utilize t§&@9€ could not be tapped by a transfer task. Ir
following surface cues in judging grammaticalitf'tead' natural Ifangyage _knowledge is related t
of novel test sentences: bigram and trigram fréurface properties in a different way. Words be:
quencies, or chunk strength (e.g., Knowlton &°n9d to form classes such as nouns and verb
Squire, 1996; Perruchet & Pacteau, 1990; Refind regularities over those categories are centr
ington & Chater, 1996; E. Servan-Schreiber 40 Natural language knowledge. Speakers of na
Anderson, 1990), frequencies of beginning aridf! languages can infer the category member
ending bigrams and trigrams, or anchor strengti'PS of nc_)\_/el words on_ly when they_ oceur
(e.g., Perruchet, 1994 Reber & Lewis, 1977), |é';1_m|dst_fam|har W.O.I’dS, with the .exceptlon of
gality of the first element (e.g., Reber & AIIenp_rF’S_OdIC and positional cues which are proba
1978: Tunney & Altmann, 1999), presence O}?mstlcally related to category membership (e.g.,

unique chunks (e.g., Muelemans & Van ddfelly, 1992). For this reason, it is unlikely that

Leden, 1997), location of familiar chunksEnglish speakers could use their knowledge o

(Gémez & Schvaneveldt, 1994), repetition ofnglish to p.erform gramm.aticalityjudgments on
items within strings (e.g., Gémez, Gerken, gentences implemented in a completely nove

Schvaneveldt, 1999; Whittlesea & Dorkenyocabula_ry. Thus, we use the terrabst_ract

1993), and overall similarity to individual expo-9rammatical knowledgandrules to pertain to

sure strings (e.g., Vokey & Brooks, 1992). the types of generalizations characteristic of nat
To what extent might such cues be useful i@l language knowledgewhich concern the

acquiring phrase structure? Unlike predictivervileges of co-occurrence of form classes,
dependencies, these cues are tied tightly to tfiher than the noncategorical learning typically
surface features of the input, more akin to wordSSessed in transfer tasks.

segmentation than to syntax (e.g., Gobmez, 1997,

Reber, 1993). This differs from linguistic phrase

structure, in which relationships exist between

word classes rather than word tokens. Do pl’e-l We use the terrmules here as a notational convenience
dictive dependencies allow learners to acqu"t% describe the structure of the artificial language used ir

abstract structure bevond the surfacaram these experiments; however, we do not claim that the set «
Yy ¢ rules used here exhausts the possible descriptions of tt

frequency Stati_StiCS explored in prior artificialnput or that human linguistic knowledge is represented a:
grammar learning research? symbolic rules.
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The first experiment was designed to test thveere carried by adjacent form classes. This i
hypothesis that learners are sensitive to the pfar simpler than is typically observed in natural
dictive dependencies between form classes thahguages. Nevertheless, this type of miniatur
are available to signal phrase structure in latenguage is sufficiently complex that adult
guage input. The exposure language contained participants in prior studies learned only its
other cues to phrase structure other than pred&mplest structures unless additional cues wer
tive dependencies. Despite the lack of correlatedtailable (Morgan & Newport, 1981; Morgan
nonstatistical cues, learners attuned to predictie¢al., 1987, 1989).
structure should be able to use predictive depend-The primary question addressed in this stud
encies to discern phrasal units. At the same timeas the extent to which learners could acquire
learners should not be misled by other unrelatéide language when the only cues to phrase stru
surface features of the input corpus. ture were predictive dependencies. A number o

other statistical cues previously shown to affec
EXPERIMENT 1 performance on artificial grammar learning

Adult participants were exposed to sentenceasks in implicit learning studies were also pres:
from an artificial language adapted from thent in the input, but did not serve as cues t«
grammar used by Morgan and Newport (1981phrase structure (e.g., chunk strength, anchc
Phrase structure rules governed form classesstfength, unique pairs, legality of starting ele-
words. The syntax of words in each categonyents). Some of these cues are necessarily cc
pertained to the distribution of those words withelated with grammaticality. For example, an
respect to the other categories, but not to any ssxgrammatical sentence violating the rule “sen
mantic features. Unlike prior studies (e.g., Mortences can only begin with a single A word” by
gan & Newport, 1981), no visual referents werbeginning with two A words will create a unique
available to assist learners in determining whighair, AA, not present in the exposure corpus. T
forms belong to which categories. Form classésase apart the contributions of grammaticality
were organized into phrases: for example, And surface cues such as frequency and simila
phrases consisted of an A word plus an optiond&y, we performed item analyses of covariance
D word. The only cue to grammatical structuras reported below.
was statistical information; no prosodic, seman- An additional variable concerned the learn-
tic, or referential cues were available to supplérg procedure. Half of the participants were ex-
ment the predictive dependencies reflected plicitly instructed to acquire the grammatical
the patternings of words. rules of the nonsense language (intentional cor

One potentially important difference fromdition). The other half of the participants were
the language used by Morgan and Newpodssigned to the incidental condition, in which
(1981) concerns predictiveness within phrasethe primary task was coloring on the computer
The original language was inconsistent in itsvith the artificial language presented as a back
use of the predictive dependencies which amground stimulus (Saffran, Newport, Aslin, Tunick,
characteristic of natural languages: a D word& Barrueco, 1997). This paradigm enforces
could occur either with an A word in an A passive exposure rather than active hypothes
phrase, or with a C word in a C phrase. We hytesting. The incidental learning style has beetl
pothesized that participants in these experargued to be best suited to language learnin
ments might have been hindered by the lack d¢e.g., Reber, 1993; Saffran et al., 1997). The
predictive dependencies in the input, thus represent experiment allowed us to compare
quiring additional cues correlated with phras¢he outcomes of incidental and intentional
structure. The present language thus containéghrning and to ascertain whether the mecha
consistent predictive dependencies as a cue iisms subserving this type of statistical learning
phrasal units. can operate in a mode closer to the exposure

The predictive relationships hypothesizedriven learning observed during language
to be pertinent for the discovery of phrasedevelopment.
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Method Words were spoken at a rate of approximately
one word per second. Approximately three sec
onds of silence separated each sentence. Tl

Twenty-nine monolingual English speakingeacorded block of 100 sentences lasted 7 min.
undergraduates at the University of Rochester 1p,;q language contains the type of predictive

participated in this study. Fourteen participant§,cture found in natural languages. In A

were assigned to the intentional condition, ar}ﬁinrases A words can occur without D words
15 were assigned to the incidental conditiotyt occyrrences of D words perfectly predict the
Four additional participants completed only thSresence of A words: the same relationship ob
first session of the experiment; their data wetgins petween C words and G words. Similarly

not included in the analysis. Sixteen control pag phrases can occur without F words (as op
ticipants (10 from the University of Rochestengn,| ynits at the ends of sentences), but if a

6 from the University of Wisconsin—-Madison)g \vord is present, a C phrase must precede i

were tested without any exposure to the lafyg girectionality of the statistical patterns in
guage. All participants gave informed consenf,;q language is the opposite of English, in

prior to participating. which perfect predictors precede the member o
the phrase that they predict (e.g., determiner
precede nouns, prepositions precede nou

The artificial language was closely adapteghrases, and transitive verbs precede their ol
from the language used by Morgan and Newpgects). Any attempt to project English structure
(1981) and is generated by the rewrite rules in (Iohto the language would have resulted in poo
learning outcomes.

Participants

Description of the Linguistic System

(1) S—. AP +BP +(CP)

AP — A+ (D) Procedure

P+FQ - . . . "
BP - g H Participants in the intentional condition were
CP_ C+(G) told that they would hear a nonsense languag

) consisting of meaningless words arranged int
Each letter in the grammar represents one folfantences via grammatical rules and that the

class, consisting of two to four monosyllabiGyoyid pe tested on its grammatical structure
nonsense words (see Table 1). Note. that D anddgricipants in the incidental condition were
are optional, as is the final C phrase; the B phraggred to create an illustration using the chil-
has two variants. This grammar generates 18 pefan's computer coloring game KidPix2. These
sible sentence types; only sentences of five ggicinants were informed that there would be ¢
fewer words (14 sentence types) were used. Fiftyysense language playing in the backgrounc
sentences were randomly chosen as the presepig 1old nothing about the structure of the lan-
tion set, out of the 1624 sentences of five Wor%%age' They were also informed that they woulc
or fewer. A traine_d female speaker recor(_jed trgfe tested on the nonsense language, but not tc
presentation set in two random orders with unjghich aspects of the language would be teste
formly descending prosody across each senteng@.cayse participants knew they would be testec
this condition was not fully incidental. All par-
TABLE 1 ticipants Wer.e.tested individually.

Each participant heard the tape of sentence
four times during a 30-min session on each o
two consecutive days, with a break halfway

Word Categories from the Artificial Language

Category A biff hep mib rud - -

Category C cav lum neb sig thro_ugh each session. Three different forced
Category D klor pell choice tests, adapted from Morgan and Newpot
Category E jux vot (1981), were administered. On all tests, partici-
Category F dupp loke pants were instructed to circle 1 or 2 dependin
Category G tiz pilk

on whether the first or the second sequence c
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each trial was a more acceptable string from theWhile the rule tests provided information
exposure language. Participants received seveahlout the extent to which participants acquirec
practice trials in English prior to each test. the structure of the language, phrase structur
Rule tests one and twBule Test One was ad-knowledge was not required for successful per
ministered after the first listening session, arfdrmance. For example, participants could per-
Rule Test Two was administered after the secofarm better than chance on the items testing
listening session. These forced-choice tests d@®ule 5 by noting that they had never heard ai
sessed knowledge of the generalizations overword directly following an A word, without
form classes which generated the input. Therecourse to a phrase structure representation.
were 24 item pairs on each test, four testing eachFragment testThis test was intended to more
of six different rules of the language (see Tabledrectly assess the extent to which learners rey
for the rules and example test items). On eacesented the input in terms of phrasal group
trial, participants heard a pair of novel sentencasgs. Each trial consisted of two sentence frag
recorded by a trained speaker with uniformly denents, a phrase and a sequence spanning
scending intonation. One member of each pagihrase boundary. We hypothesized that if learn
was a grammatical sentence; the other senteras had succeeded in grouping the input string
violated a rule of the language. Participants wemeto phrases, then sentence fragments whic
instructed to choose the grammatical sentenamnstituted phrases should appear more natur
As shown in Table 2, the first two rules testethan nonphrase fragments. For example, th
whether participants had learned about the priienglish phras¢éhe dogshould appear more co-
leges of occurrence of individual word classefierent than the nonphrase fragmduit the
The last four rules concerned the dependenciegen though both word sequences are consit
between word classes which signal the phratent with English grammar. Participants were
structure of the language. The two tests cothus asked to decide which fragment seeme
tained different items, as noted in the Appendixike a better or more coherent group or unit
and their order was the same for all participantérom the nonsense language. To ensure that pe
formance on this test was a function of phrasa
knowledge rather than the frequencies with
which each fragment had occurred in the input
the phrase and nonphrase fragments were col
trolled such that both fragment types were

TABLE 2

The Six Rules Tested and Example Test Items

Rule 1: Every sentence must contain at least one A word.

MIB SIG DUPP [A-C-F equally frequent in the exposure corpus. If

*SIG DUPP [C-F] learners attend only to fragment frequency in-
Rule 2: No sentence may contain more than one A word. formation, they should perfF’rm at Cha_nce due
MIB PELL JUX CAV [A-D-E-C] to the controls on word pair frequencies. Per-
2MIB BIFF PELLJUXCAY  [A-A-D-E-C] formance exceeding chance would suggest th:
Rule 3: If there is an E word, there cannot be a CP. participants’ representations of phrasal frag-
BIFF KLOR JUX [A-D-E] ments were more coherent than their represer
*BIFF KLOR LUM JUX [A-D-C-E] tations of nonphrase fragments, despite the fa

Rule 4: If there is a D word, then there must be an A wordthat both fragment types occurred equally ofter
RUD PELLNEBDUPPSIG [A-D-C-F-C] in the input. Phrase sequences were coded

*PELL NEB DUPP SIG [D-C-F-C] grammatical and nonphrase sequences as u
Rule 5: If there is an F word, then there must be a CP.  grammatical, although all were legal sequence
BIFF NEB DUPP [A-C-F] in the language. The test consisted of 24 item:
*BIFF DUPP [A-F] eight items testing each of the three phras
Rule 6: If there is a G word, then there must be a C word. types; each phrasal category was tested by tw
MIB VOT CAV TIZ [A-E-C-C] different nonphrase fragment types (see Table 3

3MIB VOT TIZ [A-E-G]

This test was administered only after the sec
2Ungrammatical items. ond listening session.
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TABLE 3 groups as compared to the control group (bott

Sample Items from the Fragment Test p <.01). No differences between the experimen-

tal groups emerged. There was also a significan

A phrase BIFF KLOR [A-D] main effect of Test (Rule Test 1, Rule Test 2, and
“BIFF CAV A-C] Fragment Test)E(2,42)= 7.3, p < .01. This ef-

KLOR CAV [b-cl fect was due to better performance on both rule
B phrase SIG TIZ LOKE [C-G-F] tests than on the Fragment Test (bpt< 01).
:_Fr’lEth Osé(é sz [[g_' FC(‘:E]‘] No interaction between Group and Test egeet.

Because the two experimental groups performet

C phrase SIG PILK [C-G]  equivalently on all three tests, data from the in-

2KLOR SIG [D-C]

tentional and incidental conditions are com-
bined in the subsequent analyses.

A Worq p:_';\ir crossing a phrase boundary rather than un- The next set of analyses contrasted the exper
grammaticality. mental and control groups’ performance on the

three tests. Experimental participants signifi-

Control group An additional group of partic- cantly outperformed control participants on all
ipants received the three tests without exposuiieree tests; Rule Test Origd3)=3.33,p < .001;
to the language to ensure that performance eRule Test Twot(43)=5.79,p < .0001; Fragment
ceeding chance by the experimental participantest:t(43)=2.96,p < .001 (see Fig. 1).
was due to learning rather than biased test mate-Table 4 presents participants’ mean scores o
rials (e.g., artifacts of similarity to English).  the six rules tested on the two rule tests, alon
with significance tests contrasting the experi-
mental group to chance and to the control grour

The first analysis tested differences betweem more conservative measure of performanc
the three groups: the intentional condition, théRedington & Chater, 1996). Experimental par-
incidental condition, and the control group. Articipants significantly exceeded chance on foul
ANOVA compared overall scores on the threeules on Rule Test One, with performance sig-
tests. The main effect of Group (intentional, innificantly below chance on one rule (discussec
cidental, and control) was significaft(2,42)= below), and exceeded chance on five rules o
19.3, p < .0001. A two-tailed Dunnett test Rule Test Two. Experimental participants out-
showed that this effect was due to significantlperformed controls on three Rule Test One rule
better performance in the two experimentaand four Rule Test Two rules. Successful per

2DUPP SIG [F-C]

Results

L 201 @ Intentional
o™ m Incidental
I 16 4 O Control
w
=
=)
ﬁ 12 |
5
8 8
wm
3 4
=
0 -

Rule Test 1 Rule Test 2 Fragment Test

FIG. 1. Mean scores for participants (experimental and control) in Experiment 1.
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TABLE 4

Experiment 1: Experimental Group Mean Scores and Significance Tests Against Chance (2 out of 4 Possible) and A
the Control Group for Rule Tests One and Two

t-test against chance Control vs. experimental
Experimental mean (df 28) Control mean (df 43)

Rule Test One

Rule 1 3.31 7.03 ** 2.25 3.25**
Rule 2 2.52 2.56 * 1.68 2.14*
Rule 3 1.17 -5.63 ** 1.56 1.26
Rule 4 3.48 10.18 ** 2.5 3.48 **
Rule 5 3.03 6.15 ** 2.75 .99
Rule 6 2.55 3.13* 2.38 .54

Rule Test Two

Rule 1 3.10 5.06 ** 2.18 2.59 *
Rule 2 2.59 2.82* 2.13 1.34
Rule 3 1.72 -1.62 1.94 722
Rule 4 3.45 11.4 ** 1.94 4.90 **
Rule 5 3.038 8.19 ** 231 2.59*
Rule 6 3.14 7.35** 1.63 4.96 **
*p<.05.
*p<.01.

formance included the conditional rules govern- Each test consisted of 24 forced-choice pairs
ing the dependencies between grammatical cabntrasting grammatical and ungrammatical
egories. On the Fragment Test, the experimentedms, rendering 48 items for each ANCOVA.
group’s scores on items testing the B and The dependent variable was the proportion of
phrases significantly exceeded both chance atiches each item was endorsed as grammatica
the control group’s scores, with chance perfornitems were then coded according to measure
ance on the A phrase items (see Table 5). shown to be pertinent in prior artificial grammar
We next performed a series of item analysdsarning studies, as described previously in the
to determine the basis for participants’ gramiiterature review. For the ANCOVA models ex-
maticality judgments. As noted above, novel uramining Rule Tests One and Two, grammatical-
grammatical items tend to differ from the expoity was coded as a two-level factor: items were
sure corpus in more than just grammaticalitgither grammatical or not. Legality of the first
and these surface factors have been shown toword was also coded as a two-level factor. The
fluence participants’ performance in artificiakfemaining factors were all continuous variables
grammar learning tasks. To determine whicbomputed for each test item relative to the expo-
factors influenced participants’ judgments, wesure corpus: chunk strength (the average of the
performed analyses of covariance (ANCOVA)nput frequencies for all word pairs and triples
in which string and substring features were effier each item), anchor strength (the composite o
tered as covariates. The question of interest wdee input frequencies for the initial and final word
whether grammaticality (whether or not a givepairs and triples for each iterijyniqueness (the
test item violated a rule of the language) would _ _
continue to account for a significant portion of Additional analyses tested bigrams and trigrams sepa
the variance once other factors representin Srat_gly for both the chunk strength_and anchor strength co
o . _p 9 %nates, as well as initial versus final anchors. The result:
face characteristics of the stimuli were enteregy not differ when the sizes and positions of chunks were
into the model. taken into account.
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TABLE 5

Experiment 1: Mean Scores and Significance Tests against Chance (4 out of 8 Possible)
and against the Control Group for the Fragment Test

t-test against chance Control vs. experimental
Experimental mean (df 28) Control mean (df 43)
A phrase 4.00 0 3.75 423
B phrase 5.21 4,74 ** 431 2.13*
C phrase 5.14 3.84 ** 3.75 2.86 **
*p<.05.
**p<.01.

number of word pairs in each item that never oress would influence participants’ judgments.
curred in the input), and similarity (the numbemote that while violations of predictive depend-
of words by which each item differed from theencies are related to grammaticality (phrase vel
most similar sentence in the input). In additionsus nonphrase) in that the presence of a viole
we included the length of each test item as a fation makes a fragment ungrammatical, the twc
tor, because the grammatical items were longeariables are not totally overlapping; fragments
than the ungrammatical items for four of the sixthat are not phrases did not always violate pre
rules tested. Three additional factors shown todictive dependencies.
influence judgments in other studies were not An underlying assumption of ANCOVA is ho-
relevant to our test stimuli and were not includednogeneity of regression slopes. To test this as
in the analyses: repetition (test sentences did netmption, we first examined the interaction ef-
contain word repetitions), final word legality (allfects between the two factors and each of th
final words were legal), and chunks in impermiseovariates for all three tests. None of the interac
sible locations (only four items contained chunkg&ions were significant, consistent with homogene
in impermissible locations). ity of regression slopes. Because the assumptic
Because the Fragment Test items were not homogeneity of slopes cannot be rejected, th
full sentences, the fragment item analyses coeffects of the covariates can be estimated by
tained only a subset of the variables describsthgle slope, and the interaction terms were elim
above: grammaticality (phrase vs. nonphrasehated from the final models.
chunk strength, unigueness, and similarity. An ANCOVA models were generated to assess
additional variable concerned violations of prethe item results from each of the three tests, in-
dictive dependencies. Recall that each phraskiding both the experimental group and the con-
fragment was tested by two different types dfol group separately as dependent variables.
nonphrase fragments. Some of the nonphraBer the experimental group, only grammaticality
fragments (e.g., DC) violated one or more prewvas a significant predictor of scores on both Rule
dictive dependencies (e.g., D predicts A). Oth@lests One and Two; no other covariates ac
nonphrase fragments, such as AC, did not vigounted for a significant portion of the variance.
late any predictive dependencies because n€n Rule Test One, the legality of the first word
ther A nor C requires any additional elemerfactor (p<.07) and the length of test items factor
within the phrase. None of the phrases (gram-
mat_|cal fragment;) V|oIated. predl_ctIVe depend- “To ensure that effects of covariates were not minimizec
encies. We were interested in asking whether tB@ e inciusion of multiple potentially related variables, we

degree to which fragments violated predictiveaiso performed a series of single-factor plus single-covariat
analyses (e.g., grammaticalitychunk strength). The pat-
tern of results corresponded to the omnibus ANCOVA mod-
3Thanks to an anonymous reviewer for this suggestion. els for all three tests.
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(p<.09) showed a trend toward significance; th&ANCOVA, grammaticality was a significant pre-
length factor also showed a trend toward signifidictor. Similarly, the violations factor was sig-
cance on Rule Test Tw@(< .07). Attention to nificant when grammaticality was not included
the length of test items may explain the patterim the analysis. However, when the violations
of results for Rule 3. For this rule, subjectscovariate and the grammaticality factor were
chose the correct item less often than would bigoth included, only the violations covariate was
expected by chance, a pattern potentially due # significant predictor; the effect of grammati-
the fact that the correct answer always containeghlity was removed. These findings suggest tha
fewer words than the incorrect answer. Whethe number of violations of dependencies in the
the control group means served as the dependéest fragments affected responses more strong|
variable, the length of the test items accountetthan whether or not a fragment corresponded tc
for a significant portion of the variance on Rulea phrasal unit. No other factors were significant
Test One; no covariates were significant on Rul@ these analyses. None of the variables were
Test Two (see Table 6). significant when the control group means
Three separate ANCOVA models were apserved as the dependent variable (see Table 7).
plied to the results from the Fragment Test, be-
cause correlational analyses indicated that two
of the variables, grammaticality and violations The results suggest that learners can dete
of dependencies, were highly related to one amphrasal units in the absence of relevant cue
other ¢ =.65). When the violations of predictive other than predictive dependencies. Perfor
dependencies covariate was not included in thmance on the rule tests suggest that learners &
quired information regarding the occurrence of
individual categories as well as the more diffi-
cult conditional rules governing dependencies
between categories. These findings differ from
the results of the studies by Morgan, Newport
and colleagues (Morgan & Newport, 1981;
Morgan et al., 1987, 1989) in which learners did

Discussion

TABLE 6

ANCOVA Results for Rule Tests One and Two,
Experimental and Control Groups

Experimental Control . .
group group ot _have access to_ cpnsstent. pred!cnve depent
F-value F-value  encies. The predictive relationships betweer
Factor (df=1, 40) (df=1,40) form classes used in the present experiment aj

parently facilitated the statistical learning of

Rule Test One phrasal groupings. Importantly, the item analy-

Grammaticality 9.57 ** 76 ses suggest that even when variance due to oth
F';St V|Z0fd 'egfﬂ'ty 3.56 06 statistical properties of the test strings, such a
Chunk strengt 01 53 chunk frequency, similarity, and legality of the
Anchor strength .01 .07 . - . LT
Similarity o1 82 first word, is partialled out, grammaticality con-
Unique pairs .02 06  tinues to account for overall performance.
Length 3.05 4.36 * The experimental group also outperformed
the control group on the Fragment Test. Phras
Rule Test Two :
and nonphrase test items were equated for fre
Grammaticality 22.52* 38 guency in the input corpus. Thus, raw frequenc)
First word legality 231 01 counts alone cannot serve to distinguish phrase
Chunk strength .15 .84 f h this test. Instead f
Anchor strength 35 123 rom nonphrases on this test. Ins ea,, success
Similarity 61 o1 performance suggests that learners’ represent
Unique pairs 13 17 tions superceded linear co-occurrence. The re
Length 3.54 04 sults indicate that participants learned the B an
*p< .05, C phrases in this fashion, but not the sentence
**p< 0L initial A phrase.
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TABLE 7

JENNY R. SAFFRAN

phrase fragments. While all of the nonphrase

ANCOVA Results for the Fragment Test, Experimental anftems for the other phrase types violated at leas
Control Groups, both with and without the Violations ofOne predictive dependency half of the non-

Phrase Structure Factor

Experimental Control
groupF-value grougF-value
Factor (df=1,42) (df=1,42)
Fragment Test (full analysis)
Grammaticality .21 .61
Chunk strength 1.92 .01
Similarity .83 .02
Unigue pairs .03 .27
Violations of
dependencies 5.24 * A4
Experimental Control
groupF-value groupF-value
Factor (df=1,43) (df=1,43)

Fragment Test (excluding violations of
predictive dependencies)

Grammaticality 5.65* .22
Chunk strength 1.90 .01
Similarity .35 .01
Unique pairs .09 A7
Experimental Control
groupF-value grougF-value
Factor (df=1,43) (df=1,43)
Fragment Test
(excluding grammaticality)
Chunk strength 3.43 .09
Similarity .98 .02
Unique pairs .01 .46
Violations of
dependencies 14.23 ** .04
*p<.05.
**p<.01.

phrase items testing the A phrase did not violat:
any predictive dependencies. These finding
offer indirect evidence supporting the claim that
predictive dependencies are playing a centre
role in the learning process.

Humans are thus capable of at least the rud
mentary acquisition of one aspect of syntactic
organization from statistical information in a
laboratory learning task. Moreover, participants
were able to do so in an incidental paradigm, ir
which learning was a secondary task. The learn
ing abilities which subserve this process are
likely to be deployable automatically, as would
be expected of mechanisms underlying chilc
language acquisition. To assess the presence
these learning mechanisms in younger learner:
the second experiment extended the investige
tion of dependency cues to include children.

EXPERIMENT 2

Experiments using complex artificial lan-
guage learning paradigms have primarily in-
volved only adult participants (though see, e.g.
Braine, Brody, Brooks, Sudhalter, Ross, Cata
lano, & Fisch, 1990; Gomez & Gerken, 1999;
Saffran et al., 1997). Children tend not to be in-
cluded either because researchers are not co
cerned with the relationship between artificial
grammar learning and first language acquisitior
or due to the difficulties inherent in eliciting
metalinguistic judgments from children. How-
ever, data from child learners are useful for
characterizations of the learning mechanism:

available for first language acquisition and for
If learners detected predictive dependenciesiodeling child language learning processes.

as hypothesized, then the extent to which frag- Saffran et al. (1997) attempted to equate tas
ments violated dependencies should have infldlemands for adult and child learners in a worc
enced the degree to which learners endorssegmentation task by using the incidental learn
them as phrases. The item analyses support timg task described in Experiment 1, in which
hypothesis: the number of predictive dependefearners were engaged in a cover task of colol
cies violated by each test fragment was iag on the computer. Under those circum-
stronger predictor of participants’ judgmentstances, children and adults showed equivaler
than whether or not a fragment was a phradevels of performance. We thus tested first- ant
Moreover, these considerations suggest a potesecond-grade children on the incidental gram
tial reason why participants did not successfullynar learning task employed in Experiment 1 to
discriminate A phrase fragments from noneetermine whether child learners can detect an
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use predictive dependencies in acquiring the bexperimental children by one third to 21 min to

ginnings of phrase structure. lessen the effects of fatigue. In order to maintair
the children’s interest during testing, they were
Method given a sticker to place on a sticker drawing

Participants after every fourth trial. All children received

] ) ) ) _multiple trials in English before each test to en-
Twenty-six monolingual English-speaking chil-g e that they understood the instructions.
dren participated in this study. The children
ranged in age from 6 to 9 (mean age: 7 years Results

7 months) and were recruited from local SUmmer g first analysis contrasted the two listening

camps. Two additional children were excludeg,q groups. As no significant differences

from the analyses because one of their pare@ﬁ]erged between the 21- and 28-min listenine
spoke a language other than English in the homg,sqion groups, the two groups are combined |
Six additional children only completed the firs, subsequent analyses. The next set of anal
of the two experimental sessions and were not igag examined children’s overall performance or
cluded in the analysis. The children receivegq three tests (see Fig. 2). An ANOVA com-
stickers and a color printout of the comput&lareq overall scores on the three tests for th
drawings they produced during the experimentyigren in the experimental and control groups
An additional group of 21 6- to 9-year-old chil-rpe main effect of Group (experimental versus
dren (mean age: 8 years 3 months) were recruit&%tro') was significantF(1,45) = 12.85,p <

to serve as control participants for this studypoy Neither the effect of Test nor the interac-
these children received only the three tests. 5, petween Group and Test were significan:
(F < 1). These findings suggest that the childrer
in the experimental group outperformed the

The language, test materials, and incidentahildren in the control group overall.

learning paradigm were the same as those used’he next set of analyses examined perform
in Experiment 1. One additional variable conance on each of the three tests individually. The
cerned the length of exposure. Pilot data sugxperimental children’s performance was reli-
gested that the two 28-min exposure sessioably better than chance on all three tests [Rul
used in Experiment 1 might be overly lengthyfest Onet(25) = 4.03,p < .01; Rule Test Two:
given children’s attentional resources. We thu$25)=4.91,p < .01; Fragment Testi(25)=2.49,
shortened the exposure sessions for 15 of the .05]. The experimental children’s data were

Procedure

2 4

20 1

m Child experimental
16 1 o Child control

12 1

81

Mean scores (chance = 12)

Rule Test 1 Rule Test 2 Fragment Test

FIG. 2. Mean scores for child participants (experimental and control) in Experiment 2.
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then contrasted with the child control particiOn the Fragment Test, the experimental chil-
pants. The experimental children significantlgren’s scores on the three phrase types exceed
outperformed the child control participants orhance only for the B phrase and did not signifi
Rule Test Onet(45)=2.02,p < .05], and Rule cantly exceed the scores of the child contro
Test Two {(45) = 3.22,p < .01], with marginal group (see Table 9).
performance on the Fragment Te&4$)=1.87, As in Experiment 1, we performed analyses
p<.07]. of covariance to determine the basis for the ex
Table 8 presents participants’ mean scores gerimental children’s responses (see Table 10
the six rules tested on the two rule tests, with si®n Rule Test One, only the length of item vari-
nificance tests contrasting the experimental chiétble accounted for a significant portion of the
dren to chance and to the control children. Theriance. On Rule Test Two, both grammatical-
experimental children performed significantlyty and the length of item variable were signifi-
better than would be expected by chance on focant predictors. In the Fragment Test analyse
rules on both Rule Tests One and Two and pdsee Table 11), grammaticality accounted for &
formed significantly worse than would be exsignificant portion of the variance when the vio-
pected by chance on one rule on Rule Test Olaions of predictive dependencies variable wa:
(discussed later). The experimental children outot included in the model. Similarly, the viola-
performed the control children on three Rul&ons variable accounted for a significant portion
Test One rules, with performance significantlpf the variance when the grammaticality factor
worse than controls on one rule. The experimewas not included. When the violations variable
tal children outperformed the control children omvas included, only a trend toward a significant
two Rule Test Two rules. As with the adult pareffect of grammaticality remaineg € .07). No
ticipants, successful performance included thether factors made significant contributions to
conditional rules testing the acquisition of théhe model. This pattern of results suggests the
dependencies between grammatical categoriéise experimental children were sensitive to the

TABLE 8

Experiment 2: Experimental Children’s Mean Scores and Significance Tests against Chance (2 out of 4 Possible
and against the Control Children for Rule Tests One and Two

Child t-test against chance Child Experimental vs. control
experimental mean (df 25) control mean (df 45)

Rule Test One

Rule 1 2.84 4.90 ** 2.19 2.15*
Rule 2 1.69 -1.03 1.86 -.59
Rule 3 .89 -5.14 ** 2.05 =-3.12 **
Rule 4 2.89 3.45 % 2.09 2.06 *
Rule 5 2.81 3.25** 2.24 1.41
Rule 6 2.85 4.28 ** 1.86 2.87 **

Rule Test Two

Rule 1 3.00 4.82 ** 2.05 2.89 **

Rule 2 1.69 -1.55 1.81 —-.36

Rule 3 1.58 -1.84 191 -.89

Rule 4 2.89 4,52 ** 1.95 3.03 **

Rule 5 2.89 3.54 ** 2.29 1.63

Rule 6 2.62 2.61* 1.95 1.70
*p<.05.

**p< 01
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TABLE 9

Experiment 2: Mean Scores and Significance Tests against Chance (4 out of 8 Possible) and against the Child Co
Group for the Fragment Test

Child t-test against chance Child Experimental vs. control
experimental mean (df 25) control mean (df 45)
A phrase 4.39 151 4.00 .32
B phrase 4.69 2.08 * 4.19 .33
C phrase 4.39 1.08 3.67 1.56

*p<.05.

phrase structure and presence of predictive deshorter than the incorrect answer on each tria
pendencies in the input. No variables conFhe analyses of covariance suggest that lengt
tributed significantly to the ANCOVA modelsstrongly influenced children’s performance.
for the child control participants. Whether this is due to a response bias or due 1
As with the adult participants, the expericharacteristics of the input is not clear. In the
mental children performed worse than would bease of the adult control participants, who alsc
expected by chance on Rule 3 on Rule Test Orstowed a significant effect of test item length,
This pattern of results may be due to the leng#ffects of length could not have been due tc
of the test items; for Rule 3, the correct answeharacteristics of the exposure stimuli since the:
did not hear the exposure stimuli. One possibls

reason why the experimental child group anc

TABLE 10 the adult control group might show significant

effects of length in the item analyses, but not the
experimental adult group or the child controls,
is that the experimental child participants, who
Child Child had not yet learned much about the structure c

experimental control the language, followed a similar strategy to the

groupF-value  grougF-value  adylt controls: comparing the two items in eact

Factor (df=1,40) (d=140)  test pair and noting that one was missing a wor:
contained in the other. In the absence of goo
structural knowledge about the language, the

ANCOVA Results for Rule Tests One and Two, Child
Experimental and Child Control Groups

Rule Test One

Grammaticality 213 01 full items may appear to be more grammatica
First word legality .28 .39 th it . d. Th hild trol
Chunk strength 12 02 an items missing a word. The child contro
Anchor strength 03 46 participants may not have been influenced b
Similarity 1.32 .08 length because they lacked the task understan
Unique pairs 02 1.41 ing required to do more than randomly guess ol
Length 12.11 ** 97

each trial, whereas the adult experimental grou
may have already acquired sufficient structura
knowledge to perform the task.

Grammaticality 7.76** 1.00 The final set of analyses compared the expel

Rule Test Two

First word legality 3.17 81 imental children’s performance with the experi-
Chunk strength .34 .09 tal adult tici ts in E . t1 A
Anchor strength 17 118 mental adult participants in Experiment 1. An
Similarity 111 15 ANOVA compared overall scores on the three
Unique pairs .68 84 tests for the two age groups. There was a signi
Length 8.58 * 1.40 icant main effect of Age, with adults outper-
*p< .05, forming children: F(1,53) = 10.52,p < .01.

**p< 0L There was also a significant main effect of Test



508

TABLE 11

ANCOVA Results for the Fragment Test, Child
Experimental and Child Control Groups

Child Child
experimental control
groupF-value group--value
Factor (df=1,42) (df=1,42)
Fragment Test (full analysis)
Grammaticality 21 .01
Chunk strength 1.92 .39
Similarity .83 .02
Unique pairs .03 1.95
Violations of
dependencies 5.24* .09
Child Child
experimental control
groupF-value group--value
Factor (df=1,43) (df=1,43)

Fragment Test (excluding violations
of predictive dependencies)

Grammaticality 5.65 * .02
Chunk strength 1.90 .01
Similarity .35 .01
Unigue pairs .09 .03
Child Child
experimental control
groupF-value groupF-value
Factor (df=1,43) (df=1,43)

Fragment Test
(excluding grammaticality)

Chunk strength 1.08 .39
Similarity 1.03 .02
Unique pairs .01 2.01
Violations of

dependencies 7.05* .01

*p < .05.

JENNY R. SAFFRAN

adults’, the children did acquire rudimentary as-
pects of the phrase structure of the language; th
was particularly evident in the analyses of covari-
ance, in which the grammaticality of the test
items accounted for a significant proportion of
the variance in children’s responses. Performanc
on the conditional rules suggests that the childre
acquired some of the dependencies of the phra:
structure. Child learners may be limited in their
ability to detect and utilize predictive dependen-
cies. Alternatively, the difficulty of the metalin-
guistic judgments required by these testing pro
cedures, particularly on the Fragment Test, ma
have masked children’s linguistic knowledge;
young children tend to perform more poorly than
older children and adults on psycholinguistic
tests (e.g., Fathman, 1975). For example, Slavo
and Johnson (1995) found that children unde
the age of 7 1/2 were unable to consistently
perform grammaticality judgments for native
language sentences. Future studies will entail th
development of more implicit measures of learn-
ing that do not rely on forced-choice judgments.
Listening time measures have been profitably
applied to the study of infant learning of simple
grammars (Gomez & Gerken, 1999; Marcus,
Vijayan, Bandi Rao, & Vishton, 1999) and may
be adaptable for studying the acquisition of more
complex grammars such as those used here.
Age differences did emerge in these results
adults consistently outperformed the children or
all three tests. The children nevertheless dis
played some systematicity in their responses. A
shown in Table 12, we computed the overall per
centage of varianceR{) in participants’ re-
sponses that can be accounted for by the facto
entered into the analyses of covariance (excluc
ing the length factor; because this factor con
tributed significantly for the control subjects, the

F(2,53)=9.65,p < .01. This effect was due touse of item length may be a function of testing
better performance on both rule tests than on thgategy not relevant to learning during expo-
Fragment Test (both< .01). No interaction be- sure). For both the adults and the children, thes

tween Age and Test emerged.

Discussion

factors accounted for a significant portion of the
variance for the experimental participants acros
age groups on all three tests. This was particL

The results of Experiment 2 suggest that chilarly true of Rule Test Two, where these vari-
dren may possess a limited ability to acquire syables accounted for 62% of the variance ir
tactic knowledge via statistical information.adults’ performance and 45% of the variance ir
While their performance was not as strong as tlegildren’s performance. Like the adults, the chil-
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TABLE 12

Percentage of Varianc&) in Item Scores Accounted for by the ANCOVA Variables
(Excluding Item Length) for Adult, Child, and Control Subjects

Rule Test One Rule Test Two Fragment Test
(df =6,41) (df=6,41) (df=5,42)
Adult (Experiment 1) .50 ** .62 ** .31+
Child (Experiment 2) 27 * A5 ** .28 *
Adult control (Experiment 1) .08 .06 .03
Child control (Experiment 2) .07 .07 .05
*p<.05.
**p<.01.

dren were able to exploit some of the systematic The present research supports the hypothes
structure available in the input. Whether the chithat there is a relationship between human learn
dren’s overall poorer performance is due to theing abilities and the statistical cues which mirror
overall learning capacity or to the particular taséispects of the structural organization of natura
demands of this experiment is unclear. Even languages. In particular, the dependencies the
natural language learning, children start owtharacterize linguistic phrase structure might be
slower than adults in the early stages of learnirptected by a suitably able learner and used t
(e.g., Krashen, Scarcella, & Long, 1982), evetletermine groups of words which cluster into
though children eventually surpass adult learnepbrases. One ramification of this proposed
(e.g., Johnson & Newport, 1989; Newport, 1990)earning process is that dependencies delimit the
It is possible that with additional opportunitiedearner’s subsequent analyses such that syntact
for learning, the children would outperform therelationswithin phrases are highlighted. A sec-
adults on this task; they may require more datand result is that dependencigstweerphrases
upon which to perform the pertinent analysesnd other form classes become evident once th
given constraints on their information processinigarner’s representations include initial phrasal
capacities (Slavoff & Johnson, 1995). Alternagroupings.
tively, the acquisition of basic phrase structure The experimental results suggest that huma
may be an aspect of language acquisition whiédarning mechanisms contain design feature
does not show critical period affects, akin to thsuited to the kind of solution demanded by the
acquisition of basic word order (e.g., Johnson &tructure of this learning problem. Adults, and to
Newport, 1989; Newport, 1990). some extent children, acquired the beginnings o
phrase structure given only the basic distribu:
GENERAL DISCUSSION tional cues inherent in the dependencies betwee
The statistical structure of languages repréorm classes. These results support the hypothe
sents a potential goldmine for learners. Statistis that human learning mechanisms possess t
cal information could be brought to bear on aomputational power needed to derive the begin
variety of the learning problems solved by chilnings of hierarchical structure from the statistical
dren acquiring languages, particularly wherelationships between form classes and can do ¢
combined with other types of cues available iwia incidental learning mechanisms.
linguistic input. It is surprising, in light of this Interestingly, learners’ performance was not
potential wealth of information, that the empirimeasurably influenced by features of the tes
cal literature has largely neglected the possib#trings other than grammaticality (and, for the
ity that statistical learning subserves significamhildren, string length). There were certainly
aspects of language acquisition (see also Saiimerous substring statistical properties of the
denberg, 1997). input which could have driven performance;
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learners might have attended primarily to ththeory of competitive chunking suggests that
frequencies of word pairs or triplets or to théearners are sensitive to chunks in the input an
presence of unique pairs in test strings. Howse known chunks to distinguish grammatical
ever, learners acquired more abstract and unand ungrammatical sequences. At one level, thi
servable features of the input—which types ofiew is very similar to our own: phrases are
words predict other types of words—thereby deadetected as chunks in the input. The interestin
riving phrasal units. The persistent effects dlifferences arise when we consider the ground
grammaticality may be due to a number of fader discovering and representing chunks. In
tors. One possibility is that learners were forcel. Servan-Schreiber and Anderson’s (1990
to acquire abstract properties of the input berodel, the probability of a chunk winning the
cause the grammar was written over word typesmpetition to enter the final representation is :
rather than word tokens. In the standard artifiunction of how frequently and recently that
cial grammar task, rules involve relationshipshunk was used. According to the predictive de
between individual tokens (e.g., B is followegendency hypothesis described here, phrases ¢
by M or V). However, in the language used heréjscoverable when the presence of one elemel
it would have been very difficult for learners tas tightly linked to the other. This sort of distinc-
attend to token relationships due to the larg®n, between raw frequency and conditional fre-
number of possible pairwise combinations (e.gguency (probability), has been shown to be perti
biff could be legally followed bklor, pell, cav, nent in other learning tasks: for example, Aslin
lum, neb sig, jux, or vot). Other studies have et al. (1998) found that 8-month-old infants re-
suggested that the size of the input language iied on the computation of transitional probabili-
fluences the degree to which learners abstrdies between syllables, rather than simply detect
away from individual string and substring proping syllable—pair frequencies, to segment nove
erties (e.g., McAndrews & Moscovitch, 1985words from continuous speech. With respect t
Muelemans & Van der Leden, 1997). discovering the phrase structure of natural lan
Another factor which may influence the de-guages, chunk frequency is likely to be more
gree to which learners abstract grammaticahisleading than the predictive cues characteris
properties concerns the grammar itself. Th#c of linguistic phrases.
present research emerged out of a tradition in Can the competitive chunking model account
which miniature languages containing naturdior the present data? Because competitive
language-like properties serve as a tool to inveshunking creates units that are tied tightly to the
tigate basic processes in language acquisitiaurface features of the input, a chunk might be
(e.g., Braine, 1971, Braine et al., 1990; Moesesomething likebiff cay, from the sequencheiff
& Bregman, 1972; Morgan et al., 1987, 1989¢av lum loke This type of information is very
Morgan & Newport, 1981; Saffran et al., 1996 useful for tasks in which the grammar is written
1997; Valian & Coulson, 1988). However, the arover the vocabulary itself (e.diff may be fol-
tificial grammars employed in studies of implicitlowed by cav or sig). However, this type of
learning typically contain few, if any, structuralmodel would have more difficulty when rules
properties which play a role in natural languagare written over categories of vocabulary, as ir
learning. Moreover, studies of implicit learningthe present experiment, and in natural language
are less concerned with the manner in which pafhus, if the model had sedsiff cav lum loke
ticipants in sequence learning tasks discover unigmd mib sig lum loke but had never seen the
(such as phrases) in the input, focusing instead gmammatical stringiff sig lum loke the chunk
the acquisition of rules in the form ofth-order) strength ofbiff sig would be relatively low, in-
transitions between items in sequence. correctly supporting a judgment of ungrammati-
One potentially relevant implicit learningcality. It would be interesting to see how the
model was proposed by E. Servan-Schreiber ambdel would perform on such tasks, where the
Anderson (1990), although it was not intendepertinent generalizations are only indirectly tied
as a model of natural language acquisition. The the physical stimuli.

y
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More generally, deeper links will be forgede.g., Seidenberg & Elman, 1999); for example
between the literature on implicit learning anthe necessary conditions for successful acquis
language acquisition as the former begins to atien of long-distance dependencies by Elman’
dress the types of problems facing languad&993) model are derived from developmenta
learners (see, e.g., Perruchet & Vintner, 1998&)onstraints on working memory (Newport, 1990).
One type of model which has been extensively In conclusion, these results support the hy
applied to both implicit learning and languag@othesis that learners can detect predictive de
development is the simple recurrent networgendencies in the service of acquiring simple
(SRN) (e.g., Christiansen, 1994; Cleeremanphrase structure, revealing a potential cue fo
1993; Elman, 1990; Elman, Bates, Johnsothe acquisition of phrase structure in natural lan
Karmiloff-Smith, Parisi, & Plunkett, 1996). guage learning. Moreover, learners were not in
These models learn to predict the next elemeftienced by the variety of irrelevant surface pat-
in a sequence, with additional information deterns available in the input. Instead, learner:
rived from the temporal context of precedingnay be constrained to detect a small subset «
events via recurrent connections. Cleeremapsssible generalizations, thereby filtering out
and his colleagues (e.g., Cleeremans, 19%%me of the many irrelevant generalizations
Cleeremans & McClelland, 1991) demonstrateavailable in the input. It is these constraints
that the SRN model can account for human pewhich turn the statistics of languages into a po
formance across a range of implicit sequendential goldmine for learners, rather than a mine:
learning tasks. In particular, the SRN moddield of misleading information. To the extent
exposed to finite-state grammars can acquitieat this type of view is correct, the striking sim-
long-distance dependencies over embedded nilarities observed across human languages ma
terial, as long as subtle statistical properties oéflect constraints on human learning abilities.
embedded strings depend on earlier informatiorhe degree to which these constraints are ta
(D. Servan-Schreiber, Cleeremans, & McClellored particularly for language learning, or in-
land, 1991). This type of task is highly relevanstead emerge from other properties of cognitior
to language learning, and these results are maémd perception, remains a key empirical ques
rored by Elman’s (1993) simulations, in which aion for future exploration.
similar model acquired a grammar containing
recursively embedded relative clauses (under
certain conditions discussed below).

To what extent might we expect the present
findings to be captured by the SRN model, given sentences are grouped according to their structures
that the acquisition of phrase structure has beeither than in the randomization orders presented during
cast here as a statistical learning problem? In pégsting.
ticular, can these results be explained without ingxposure sentences
plementing an additional constraint favoring pre-

APPENDIX 1: EXPOSURE AND TEST
STIMULI FOR EXPERIMENT 1

1. AE biff klor lum loke

dictive dependencies as cues to units? Because

e e biff jux rud pell sig dupp
connec.:non_lst. model; are attuned to predictive in-  pep vot hep Klor neb loke
formation, it is possible that a SRN would learn mib jux hep pell sig dupp
in the same fashion as humans given the cues rud vot mib pell cav loke
in this type of language (which could, in turn, o apg ACGF
offer a deeper computational explanation of the  mib kior jux biff cav pilk dupp
learning mechanisms described here). Alter- , . rud neb pilk loke
nativ_ely, sucqessful modgling of the;_e data may  hep sig dupp
require the implementation of additional con-  mib neb loke - ADCGF
straints. Connectionist models acquiring natural- hep klor lum tiz loke

’ a 9 4. ADCF rud pell sig pilk dupp

language-like structures often benefit from the
consideration of constraints on human learners

biff pell neb dupp
rud klor cav loke

biff klor sig pilk loke
mib pell neb tiz dupp
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hep pell cav pilk loke 12. ACFCG
mib klor neb pilk dupp biff sig dupp neb tiz
rud lum loke cav pilk

£ AE(.: biff cav dupp neb pilk
n.Jd Jux Il.Jm rud sig loke cav tiz
biff vot sig
mib jux sig 13. ADCFC

8. AECG biff pell lum dupp cav

hep klor sig loke neb
hep pell lum loke cav
mib klor cav dupp neb
rud pell cav loke lum
mib klor neb loke sig

hep jux neb tiz
mib vot cav pilk
biff jux neb tiz

9. ADEC
rud pell vot lum
14. ACGFC
mib neb tiz loke sig
rud cav pilk dupp lum
biff neb pilk dupp cav
hep lum tiz loke cav
rud neb tiz dupp lum
hep vot lum

10. ADECG
mib pell vot neb tiz

11. ACFC
hep sig loke neb
mib neb dupp lum
hep sig loke cav

hep sig dupp sig

Rule Tests One and Two

Rule 1: Every sentence must contain at least one A word.

Rule Test One Rule Test Two

mib sig dupp
*sig dupp

biff lum loke sig tiz
*lum loke sig tiz

hep cav loke
*cav loke

biff lum dupp cav pilk
*lum dupp cav pilk

hep jux lum mib vot neb
*ux lum *vot neb

rud lum tiz loke rud sig tiz dupp
*lum tiz loke *sig tiz dupp

JENNY R. SAFFRAN

biff vot neb
*biff sig pilk vot neb

biff jux sig

*biff lum tiz jux sig
rud Klor jux

*rud klor lum jux

hep pell vot
*hep pell lum vot

mib klor vot cav
*mib klor neb vot cav

mib pell vot sig

*mib pell neb vot sig
Rule 4: If there is a D word, there must be an A word.
Rule Test One Rule Test Two

mib klor vot cav
*klor vot cav

hep klor jux cav
*klor jux cav

biff pell lum loke
*pell lum loke

biff pell neb loke
*pell neb loke

rud pell neb dupp sig
*pell neb dupp sig

hep klor sig dupp cav
*klor sig dupp cav

mib klor vot neb
*klor vot neb

rud pell jux neb
*pell jux neb

Rule 5: If there is an F word, there must be a CP.
Rule Test One Rule Test Two

mib pell sig loke hep cav pilk dupp

*mib pell loke *hep pilk dupp
rud pell lum loke cav biff sig tiz loke
*rud pell loke cav *biff tiz loke

biff neb dupp
*biff dupp

rud jux neb tiz
*rud jux tiz

hep cav dupp lum
*hep dupp lum

mib neb pilk dupp lum
*mib pilk dupp lum

Rule 6: If there is a G word, there must be a C word.
Rule Test One Rule Test Two

biff cav tiz dupp rud pell cav loke

Rule 2: No sentence may contain more than one A word.

*biff tiz dupp *rud pell loke

Rule Test One

rud sig dupp
*hep rud sig dupp

mib pell jux cav
*mib biff pell jux cav
biff vot

*biff rud vot

hep cav dupp sig
*rud hep cav dupp sig

Rule 3: If there is an E word, there cannot be a CP.

Rule Test One

hep jux
*hep cav tiz jux

Rule Test Two

rud neb loke
*hep rud neb loke

mib klor vot cav
*mib biff klor vot cav

hep jux
*hep rud jux

biff lum loke sig
*rud biff lum loke sig

Rule Test Two

rud jux
*rud cav pilk jux

hep sig pilk loke mib klor lum dupp sig

*hep pilk loke *mib klor dupp sig
mib vot cav tiz biff lum loke
*mib vot tiz *biff loke

rud neb pilk loke cav
*rud pilk loke cav

hep cav loke neb
*hep loke neb

Fragment Test

Asterisks signal fragments spanning a phrase boundary,

not ungrammaticality.

Fragments testing the A phrase:

AD versus *AC AD versus *DC
biff klor hep klor
*piff cav *Kklor sig



rud pell
*rud neb
mib pell
*mib neb

hep klor
*hep sig
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hep pell
*pell lum

rud klor
*klor cav
biff pell
*pell neb

Fragments testing the B phrase:

CGF versus *GFC

sig pilk loke
*pilk loke neb

lum tiz dupp
*tiz dupp cav

cav pilk dupp
*pilk dupp lum

lum tiz loke
*tiz loke neb

CGF versus *DCG

neb tiz dupp
*klor neb tiz

cav pilk loke
*pell cav pilk

neb pilk dupp
*klor neb pilk

lum tiz loke
*klor lum tiz

Fragments testing the C phrase:

CG versus *DC

CG versus *FC

lum tiz sig tiz
*Kklor lum *loke sig
neb tiz neb tiz
*pell neb *dupp neb
sig pilk cav pilk
*klor sig *loke cav
neb pilk sig pilk
*klor neb *dupp sig
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