
Temporal Patterns in Polyphony

Mathieu Bergeron and Darrell Conklin

Department of Computing
City University London

{bergeron,conklin}@soi.city.ac.uk

Abstract. This paper formally characterizes the expressiveness of three
approaches for polyphonic pattern representation and matching: R (rela-
tional patterns); H (Humdrum); and SPP (Structured Polyphonic Pat-
terns). Relational networks have the highest expressiveness but H and
SPP admit faster matching algorithms. It is shown how H and SPP
can be cast as different restrictions of R, both providing an expressive
subset of full relational networks. In addition, the intersection of H and
SPP yields yet another language: SPPseq, a restriction of SPP based
on sequences of layered components. This new language is expressive
enough to capture basic polyphonic patterns such as suspensions and
parallel fifths and may be a new, more efficient approach to pattern ex-
traction. The formal arguments contained in this paper are illustrated
with musical examples extracted from J.S. Bach chorale harmonizations.

1 Motivation

Polyphony forms a large part of the western musical heritage and its essence
— having multiple concurrent streams of musical events (with the temporal
relations this implies) — is encountered in most kinds of modern music. However,
there are few computational approaches for the expression and efficient matching
of polyphonic patterns. This paper formally compares the expressiveness of three
such languages and proposes a new one, establishing the hierarchy of Figure 1. To
facilitate this presentation, arguments are restricted to patterns containing only
two voices; results may however be generalized to denser polyphonic textures.

As a motivating example, consider the two-voice suspension of Figure 2. This
typical polyphonic pattern is expressed in Figure 3 in the languages R (relational
patterns); Humdrum; and SPP (Structured Polyphonic Patterns). As illustrated
by the R expression (Figure 3i), even this simple pattern requires sophistication:
variables to be instantiated by three events; inequality statements ensuring that
the mapping from variables to events is injective; temporal relations between
events (discussed below); and pitch relations such as consonance and dissonance.

This paper restricts its attention to the following binary temporal relations:
i) m(a, b) (a meets b: a finishes when b begins), ii) the symmetric st(a, b) (a and b
start together), iii) sw(a, b) (a starts while b is sounding) and iv) the symmetric
ov(a, b) (a and b overlap: they sound together as some point in time). Figure 4
restates the relations in the notation of Allen [1] and Figure 2ii illustrates their
musical relevance.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 32–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Temporal Patterns in Polyphony 33

Suspension
•

Embellished
tritone resolution

•

Layered
passing tones

•

Dislocated chord
•

SPPseq

SPP
H

R

Fig. 1. Expressiveness of four polyphonic pattern languages: R (relational), H (Hum-
drum), SPP (Structured Polyphonic Patterns) and SPPseq (SPP restricted to se-
quences of layered components)

(i)
time

C3

F2

E4
F4

pitch

a

e
sw

c

st

d

b

m

(ii)

Fig. 2. (i) A 4-3 suspension between bass and alto voices in bars 16-17 of Bach’s chorale
BWV 283 and (ii) A piano-roll representation of the alto and bass voices

The Humdrum toolkit is widely-used for pattern matching in symbolic music
data. Although Humdrum supports polyphony, it can be difficult to use for even
simple patterns [5,2]. For example, Figure 3ii shows a Humdrum suspension
pattern expressed with regular expressions. These typically do two things : i)
match the beginning of events, the continuation of events or possibly no event
at all (a “don’t care” option) and ii) match features of those events by matching
corresponding values in additional columns (this is the purpose of the “t” tokens
at the end of the each lines, the first one matching a consonance feature and the
second a dissonance feature).

In [4], the difficulties of Humdrum are circumvented by implementing a Prolog
query that extracts all parallel fifths occurring in a corpus of J.S. Bach chorale
harmonizations. The approach requires expert Prolog programming knowledge
however, and even a slight reordering of Prolog clauses may have dramatic effects
on pattern matching tractability. In general, the relational matching problem is

34 M. Bergeron and D. Conklin

(i)

event(a) voice(a, x) m(a, b)
event(b) voice(b, x) sw(e, a)
event(e) voice(e, y) sw(b, e)
a �= b x �= y diss(a, e)
a �= e cons(b, e)
b �= e

(ii) [a-g A-G]+[- # n]*[ˆ)]*[(] [a-g A-G]+[- # n]*.*.*t$
[a-g A-G]+[- # n]*[)] [ˆ(]*[a-g A-G]+[- # n]*.*t$

(iii) −{}x

−{}y

;
{sw cons(y) : t}x

−{sw diss(x) : t}y

Fig. 3. A suspension pattern using (i) relations; (ii) Humdrum and (iii) SPP

m(a, b) is a m b a b
a “meets” b

st(a, b) covers

8>>>>>>>>><
>>>>>>>>>:

a s b

b

a a “starts” b

b s a a

b

b “starts” a

a = b a

b

a “equals” b

sw(a, b) covers

8>>>>>>>>><
>>>>>>>>>:

b o a

b

a b “overlaps with” a

a d b a

b

a “during” b

a f b a

b

a “f inishes” b

ov(a, b) covers all the cases above (and their inverse), except a m b

Fig. 4. The temporal relation analyzed in this paper expressed in the notation of
Allen [1]

a subgraph isomorphism problem, which is known to be NP-complete. More-
over, not all networks are satisfiable and it is also NP-complete to determine
satisfiability. Hence, it is not practical to base a pattern extraction approach on
relational patterns. In [2], the latter results are replicated with SPP , an abstract
polyphonic pattern representation based on sequencing and layering operators.
In Figure 3iii for example, the sw cons and sw dis pattern components are
layered to form a temporal relation. This layering holds for events forming a

Temporal Patterns in Polyphony 35

︸ ︷︷ ︸

(i)
︸ ︷︷ ︸

(ii)

Fig. 5. Dislocated V7 chords captured by Pattern 1 : BWV 284 bar 15 (i) and BWV
318 bar 13 (ii)

consonance and dissonance with opposite voices, and satisfying the sw temporal
relation. SPP is further elaborated in Section 4.

2 Relational Patterns

A relational pattern r is simply a set of temporal relations over event variables ε:
Definition 1. r ∈ R ::= ω, . . . , ω with ω ::= m(ε, ε)

| ov(ε, ε)
| st(ε, ε)
| sw(ε, ε)

With appropriate pitch relations, the pattern below could represent the “dis-
located” V7 chords shown in Figure 5. It enforces that chord tones eventually
overlap with the root of the chord, but no other temporal relation is enforced:
Pattern 1. ov(a, b), ov(a, c), ov(a, d)

Alternatively, relational patterns can be represented as directed labelled graphs,
where nodes represent event variables and edges represent relations (see Figure 6).

3 Humdrum

By contrast to R, temporal relations in H are specified indirectly via a token
matrix:

Definition 2. h ∈ H ::=
⎡

⎢

⎣

h11 h12

h21 h22

...

⎤

⎥

⎦

with hij ::= ε

| (ε)

| �

The token ε refers to the beginning of a new event; the token (ε) is the continu-
ation of the preceding event and the token � is the special “don’t care” symbol

36 M. Bergeron and D. Conklin

that enforces no temporal relation. Note that time “flows” from top to bottom
in Humdrum, e.g. the token h11 is followed by the token h21. A H pattern is
interpreted as follows with respect to the temporal relations it enforces:

Lines

H R
[

a b
]

� st(a, b)

[

(a) b
]

� sw(b, a)

[

a (b)
]

� sw(a, b)

[

(a) (b)
]

� ov(a, b)

[

a �
]

,
[

� a
]

,
[

� (a)
]

, . . .,
[

� �
]

� ∅

Columns

H R
[

a

b

]

� m(a, b)

[

(a)

b

]

� m(a, b)

[

a

(a)

]

,
[

�

a

]

, . . .,
[

�

�

]

� ∅

The Humdrum pattern of Figure 3ii can be simplified to the following (variable
names correspond to those of Figure 2ii):

Example 1.
[

e (a)
(e) b

]

� sw(e, a), sw(b, e),
m(a, b)

See Figure 6ii for the corresponding temporal network.

d

c

a

b

ov

ov

ov

(i)

a

e

b
m

sw
sw

(ii)

a

e

b

d

m

m

sw
sw

ov(iii)

a

d

b

c

m

m

st(iv)

a

d

b

c

m

st st(v)

Fig. 6. Temporal networks enforced by (i) Pattern 1, (ii) Example 1, (iii) Example 2
(the dashed edge is implied by the network), (iv) Pattern 2 and (v) Pattern 3. The
network (iv) can be represented in SPP but not in Humdrum. The network (v) can
be represented in Humdrum but not in SPP .

Temporal Patterns in Polyphony 37

4 Structured Polyphonic Patterns

Patterns in SPP are defined according to the syntax below, where ε stands for
an event and −ε for a modified event (when layered, modified events start earlier
than other events in the layer); the “;” operator joins two patterns in sequence
(such that one finishes as the other starts) and the “==” operator layers two
patterns (such that both start at the same time):

Definition 3. φ ∈ SPP ::= ε

| − ε

| φ ; φ

| φ

φ

A SPP pattern is interpreted as follows with respect to the temporal relations
it enforces:

Layers

SPP R
a

c
� st(a, c)

−a
c

� sw(c, a)

a

−c � sw(a, c)

−a
−c � ov(a, c)

Sequences

SPP R
a ; b � m(a, b)

−a ; b � m(a, b)

a ; −b � m(a, b)

−a ; −b � m(a, b)

Layers of sequences

SPP R
a ; . . .
c ; . . .

� st(a, c)

−a ; . . .
c ; . . .

� sw(c, a)

a ; . . .
−c ; . . .

� sw(a, c)

−a ; . . .
−c ; . . .

� ov(a, c)

Sequences of layers

SPP R
a

c
;
b

d
� m(a, b), m(c, d)

−a
c

;
b

d
� m(a, b), m(c, d)

a

−c ;
b

d
� m(a, b), m(c, d)

a

c
;
−b
d

� m(a, b), m(c, d)

...
...

−a
−c ;

−b
−d � m(a, b), m(c, d)

When ignoring pitch relations, the suspension example of Figure 3iii is sim-
plified to the following pattern (also Figure 6iii):

38 M. Bergeron and D. Conklin

︸︷︷︸

(i)
︸ ︷︷ ︸

(ii)

Fig. 7. Layered passing tones captured by Pattern 2: BWV 255 bar 2 (i) and BWV
320 bar 19 (b)

Example 2. −a
−d ; b

−e
� ov(a, d), sw(b, e),

m(a, b), m(d, e)

One can verify that the temporal relations enforced by example Example 2 are
indeed consistent with those of a suspension.

5 H and SPP are Distinct

Claim 1. SPP �⊆ H: there exists at least one pattern in SPP that has no
equivalent in H.

Consider the following SPP pattern (also Figure 6iv):

Pattern 2. a ; b
c ; d

� st(a, c), m(a, b),
m(c, d)

With appropriate pitch relations, the pattern can capture layered passing tones
(Figure 7), including pairs of passing tones that do not share the same rhythm:
cases when b and d start together (Figure 7i) and cases when they are not
synchronized (Figure 7ii).

Pattern 2 is not representable in Humdrum, due to the absence of a temporal
relation between b and d. To capture the st(a, c), m(a, b) and st(c, d) temporal
relations enforced by the SPP pattern, the following three Humdrum patterns
are possible:

[

a c
b d

] ⎡

⎣

a c
(a) d
b �

⎤

⎦

⎡

⎣

a c
b (c)
� d

⎤

⎦

All of the above patterns enforce an additional temporal relation that is not
enforced by the SPP pattern, respectively st(b, d), sw(d, a) and sw(b, c). �

Temporal Patterns in Polyphony 39

︸ ︷︷ ︸

(i)
︸ ︷︷ ︸

(ii)

Fig. 8. Tritone resolutions captured by Pattern 3: BWV 257 bar 2 (i) and BWV 315
bar 13 (ii)

Claim 2. H �⊆ SPP: there exists at least one pattern in H that has no equiv-
alent in SPP .

Consider the following Humdrum pattern (also Figure 6v):

Pattern 3.
⎡

⎣

a c
(a) �
b d

⎤

⎦

� st(a, c), st(b, d),
m(a, b)

With appropriate pitch relations, this captures both embellished and unem-
bellished tritone resolutions (Figure 8). Figure 8ii, for example, is matched by
Pattern 3 even if the A forming the tritone in the tenor voice does not meet
with the G of the final chord. Rather, there is an embellishment in the form of
an anticipation.

Clearly, the Humdrum pattern enforces st(a, c) and st(b, d). The only way to
do that in SPP is to join a,c and b,d with the “==”operator. As the Humdrum
pattern also enforces m(a, b), these two must be joined by the “;”operator:

a

c
;
b

d

But then, the SPP pattern will also enforce the temporal relation m(c, d)
which is clearly not enforced by Pattern 3. �

By similar arguments, one can prove that the dislocated chord pattern (Pattern 1
and Figure 5) cannot be represented in either Humdrum or SPP . This explains
its place in the language hierarchy of Figure 1. This is also why the figure shows
that R properly subsumes H and SPP .

6 The Common Denominator SPPseq

Characterizing the intersection between Humdrum and SPP , the pattern lan-
guage SPPseq restricts SPP to sequences of layers:

40 M. Bergeron and D. Conklin

Definition 4. ϕ ∈ SPPseq ::= ψ

| ϕ ; ψ
with ψ ::= ε

| −ε

| ψ
ψ

With the additional restriction that there can by only one “−” operator per
layer, except for the first layer, in which any number of “−” may appear. One
can easily check, for example, that the suspension pattern (e.g. Example 2) is in
SPPseq. Also, as SPPseq can be interpreted the same way as the unrestricted
SPP (Section 4), it follows that SPP subsumes SPPseq.

Claim 3. SPPseq ⊆ H: for every ϕ ∈ SPPseq there exists a pattern h ∈ H
enforcing the same temporal network.

The proof proceeds by structural induction over the “;” operator (i.e. the claim
holds as the sequence grows). The base cases are:

a

c

−a
c

a

−c
−a
−c

Those are clearly covered by the following Humdrum patterns:
[

a c
] [

(a) c
] [

a (c)
] [

(a) (c)
]

Now, suppose there exists a pattern h ∈ H that covers the SPPseq pattern ϕ.
The induction cases are as follows (the case with two modified events −ε does
not appear; by definition of SPPseq, this is only allowed in the first layer):

ϕ ;
a

c
ϕ ;

−a
c

ϕ ;
a

−c

Suppose h has n lines. The induction cases are covered by:

h
·

[

a c
]

[

...
hn1 hn2

]

·
[

a (hn2)
(a) c

]

[

...
hn1 hn2

]

·
[

(hn1) c
a (c)

]

The last two cases enforce an extra temporal relation (respectively sw(a, hn2)
and sw(c, hn1)) that the SPPseq pattern does not enforce. However, that rela-
tion can be inferred by the temporal relations that the SPPseq pattern do en-
force. That is, referring back to Figure 2ii, whenever the relations m(a, b), m(d, e),
sw(b, e) and ov(a, d) are present, then sw(e, a) can be inferred. This inference is
also indicated in Figure 6iii by a dashed edge. �

Temporal Patterns in Polyphony 41

7 Discussion

This paper has presented three approaches that can accurately represent net-
works of temporal relations. Alternative approaches to polyphonic patterns often
lack that accuracy. For example, vertical patterns [3] can only match polyphonic
sources that have been expanded and sliced to yield a homophonic texture, hence
not supporting the sw relation. A point set pattern representation [6] can only
encode temporal relations with fixed duration ratios (capturing every instance of
a sw relation would require a set of patterns, the size of which can grow quickly
as many different ratios are likely to be found in the source). Techniques that
rely on approximate matching to a source fragment [7] can confuse simultane-
ous notes with notes that overlap without being simultaneous, hence lacking
precision with respect to the st relation.

With a little practice the musicologist should find it easy to write SPP pat-
terns, in contrast to Humdrum, which requires extensive knowledge of Unix
command line and regular expression tools. Relational patterns tend to be ver-
bose and one quickly loses sight of the overall temporal structure of the pattern,
where as the structure is syntactically expressed in SPP . In Humdrum, this is
readable when using the matrix form which this paper has developed. However,
negations and disjunctions that can in principle appear in the regular expressions
of a Humdrum pattern are not supported.

Finally, notice that R can express a great many temporal networks with un-
clear musical relevance (e.g. sw(a, b), sw(b, c)) and even networks that are unsat-
isfiable (e.g. m(a, b), st(a, b)). Perhaps there exists a restriction of R to “common
sense” musical patterns. Ideally, such a restriction would preserve most of R’s
expressiveness, while being conducive to efficient pattern matching algorithms.
Both Humdrum and SPP are candidate restrictions, yielding relational graphs
that are always satisfiable. The graphs are also always connected and perhaps
this connectedness an interesting avenue to explore for future research. In par-
allel, a website with tools and tutorials is being developed in an effort to make
the languages presented in this paper more easily applicable to musicological
tasks.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Bergeron, M., Conklin, D.: Structured polyphonic patterns. In: Ninth International
Conference on Music Information Retrieval, Philadelphia, USA, pp. 69–74 (2008)

3. Conklin, D.: Representation and discovery of vertical patterns in music. In: Anagnos-
topoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445,
pp. 32–42. Springer, Heidelberg (2002)

4. Fitsioris, G., Conklin, D.: Parallel successions of perfect fifths in the Bach chorales.
In: Fourth Conference on Interdisciplinary Musicology, Thessaloniki, Greece (2008)

42 M. Bergeron and D. Conklin

5. Jan, S.: Meme hunting with the Humdrum toolkit: Principles, problems, and
prospects. Computer Music Journal 28(4), 68–84 (2004)

6. Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated
patterns in multidimensional representations of polyphonic music. Journal of New
Music Research 31(4), 321–345 (2002)

7. Typke, R., Veltkamp, R.C., Wiering, F.: Searching notated polyphonic music us-
ing transportation distances. In: ACM Multimedia Conference, New York, USA,
October 2004, pp. 128–135 (2004)

	Temporal Patterns in Polyphony
	Motivation
	Relational Patterns
	Humdrum
	Structured Polyphonic Patterns
	H and SPP are Distinct
	The Common Denominator SPPseq
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

