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Abstract: Background: Late Onset Bipolar Disorder (LOBD) is the arousal of Bipolar Disorder (BD) 
at old age (>60) without any previous history of disorders. LOBD is often difficult to distinguish from 
degenerative dementias, such as Alzheimer Disease (AD), due to comorbidities and common cognitive symptoms. More-
over, LOBD prevalence is increasing due to population aging. Biomarkers extracted from blood plasma are not discrimi-
nant because both pathologies share pathophysiological features related to neuroinflammation, therefore we look for ana-
tomical features highly correlated with blood biomarkers that allow accurate diagnosis prediction. This may shed some 
light on the basic biological mechanisms leading to one or another disease. Moreover, accurate diagnosis is needed to se-
lect the best personalized treatment. Objective: We look for white matter features which are correlated with blood plasma 
biomarkers (inflammatory and neurotrophic) discriminating LOBD from AD. Materials: A sample of healthy controls 
(HC) (n=19), AD patients (n=35), and BD patients (n=24) has been recruited at the Alava University Hospital. Plasma bi-
omarkers have been obtained at recruitment time. Diffusion weighted (DWI) magnetic resonance imaging (MRI) are ob-
tained for each subject. Methods: DWI is preprocessed to obtain diffusion tensor imaging (DTI) data, which is reduced to 
fractional anisotropy (FA) data. In the selection phase, eigenanatomy finds FA eigenvolumes maximally correlated with 
plasma biomarkers by partial sparse canonical correlation analysis (PSCCAN). In the analysis phase, we take the eigen-
volume projection coefficients as the classification features, carrying out cross-validation of support vector machine 
(SVM) to obtain discrimination power of each biomarker effects. The John Hopkins Universtiy white matter atlas is used 
to provide anatomical localizations of the detected feature clusters. Results: Classification results show that one specific 
biomarker of oxidative stress (malondialdehyde MDA) gives the best classification performance ( accuracy 85%, F-score 
86%, sensitivity, and specificity 87%, ) in the discrimination of AD and LOBD. Discriminating features appear to be lo-
calized in the posterior limb of the internal capsule and superior corona radiata. Conclusion: It is feasible to support con-
trast diagnosis among LOBD and AD by means of predictive classifiers based on eigenanatomy features computed from 
FA imaging correlated to plasma biomarkers. In addition, white matter eigenanatomy localizations offer some new ave-
nues to assess the differential pathophysiology of LOBD and AD. 
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INTRODUCTION  

Bipolar disorder (BD) is a chronic mood disorder associ-
ated with cognitive, affective and functional impairment, 
often appearing at youth (age around 20 years), or even ear-
lier [1], which has been considered as a risk factor for devel-
oping dementia [2]. Dementia syndrome arising as a result of 
a history of bipolarity does not correspond to the criteria of  
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Alzheimer’s disease (AD) [3]. However, late onset (i.e. 
age>60 years) BD (LOBD) [4] may be difficult to differenti-
ate from behavioral impairment associated with Alzheimer’s 
disease (AD), because they share overlapping symptoms and 
neuropathology, including cognitive impairment, emotional 
disturbances, neuroinflammation, excitotoxicity and upregu-
lated brain metabolism [5, 6]. LOBD challenges the estab-
lished viewpoint considering that AD and BD are distinct 
and unrelated clinical entities. Recent works [7, 8, 44-47], 
have been addressing the question from the point of view of 
computer aided diagnosis (CAD) systems based on imaging 
data. In spite of the good classification performances, results 
lack interpretability in terms of the anatomical localization of 
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the effects. Also, they are unrelated to other potential disease 
biomarkers. 

 Inflammation and oxidative stress have been found as 
common pathopshysiological processes underlying AD [9-
11], and BD [12-16], as well as many other neuropsycholog-
ical illness, such as depression and mania [17-20]. These 
neurological disorders seem to be epigenetically linked to 
decreased transcriptional activity. It has been observed in 
both BD and AD patients that the frontal cortex exhibits an 
altered epigenetic regulation related to neuroinflammation, 
synaptic integrity and neuroprotection, and that oxidative 
stress contributes to the pathogenesis of both diseases 
through similar mechanisms [21]. The question addressed in 
this paper is whether there are common or differential patho-
physiological effects revealed by correlation with plasma 
biomarkers, and their potential localization in the white mat-
ter structures. 

Eigenanatomy [22, 23] is a sparse dimensional reduction 
procedure, which enhances detection power and interpreta-
bility by computing correlation with a priori relevant varia-
bles. Unlike principal component analysis (PCA) and inde-
pendent component analysis (ICA), which have a global 
support, in eigenanatomy procedures the sparseness con-
straint implies that effects are localized in compact clusters. 
In this regard it is similar to sparse PCA. Moreover, eige-
nanatomy is a canonical correlation analysis (CCA), search-
ing for projection directions with the maximal Pearson's cor-
relation between the eigenvectors and some a priori relevant 
variables, subject to a sparseness constraint, hence it is a 
sparse CCA (SCCA). The approach also allows to introduce 
smoothness and cluster size conditions, such that the spuri-
ous small detections are removed. Eigenanatomy has been 
successfully applied to longitudinal cortical change detection 
[22, 24] , validation of a new cognitive scale [25], multi-
modal medical image analysis [26], and parcellation of func-
tional imaging based on a priori region labeling. 

Our study looks for the localization of white matter ef-
fects correlated with biomarkers applying an eigenanatomy 
feature extraction. Predictive CAD systems have been pro-
posed to improve the diagnostic accuracy complementing the 
neuropsychological assessments carried out by expert clini-
cians [8, 22-25]. Accurate diagnosis is crucial to mitigate 
negative effects of inappropriate treatments. The classifica-
tion performance achieved by machine learning based com-
puter aided diagnosis (CAD) on eigenanatomy projection 
coefficients is used as a post hoc analysis that measures the 
detection power for each blood biomarker.  

MATERIAL AND METHODS 

The overall process is composed of selection and analysis 
phases. The selection phase corresponds to the eigenanatomy 
algorithm, which looks for sparse pseudo-eigenvectors of the 
fractional anisotropy (FA) volumes most correlated with the 
each blood biomarker. The region localizations take the form 
of sparse eigenvolumes, thus each subject FA volume can be 
expressed as a linear combination of them. The analysis 
phase is carried out as a classification experiment where the 
features are the coefficients of the linear combination, i.e. the 
projections of the subject FA volume onto each eigenvol- 
 

ume. The classification performance thus provides the dis-
crimination power of each blood biomarker as a measure of 
their biomarker detection power. Therefore, classification 
and eigenanatomy analysis are independent processes, so 
that no circularity effect is incurred. Also, blood biomarkers 
cannot be included as classification feature because they 
have been used for selection. Performing the eigenanatomy 
over all the data we are working on the assumption that all 
data lie in the same subspace, which is a natural assumption. 
It can be argued that we are in a very subtle way using in-
formation about the test data in the training. However, be-
sides the computational cost, performing eigenanatomy per 
each cross-validation folder will be a very noisy process due 
to the small sample size. Summarizing, the process carried 
out is as follows: (a) DWI data is preprocessed and convert-
ed to FA volumes, (b) eigenanatomy takes the FA volumes 
and each blood biomarker values, producing a collection 
sparse eigenvolumes and the projection coefficients, (c) the 
class information and the projection coefficients enter classi-
fication cross-validation experiments. Finally, (d) we exam-
ine the anatomical localization of the FA eigenvolumes clus-
ters to report relevant findings. 

SUBJECTS 

Patients included in the present study were referred to the 
psychiatric unit at Alava University Hospital, Vitoria, from 
its catchment recruitment area for the clinical assessment of 
memory complaints. All patients were living in the commu-
nity. Ninety-five elderly subjects were included in the pre-
sent study. Table 1 presents demographic details of the co-
hort. The BD group fulfills the DSM IV criteria and the AD 
group fulfills the NINDS-ADRDA criteria for probable AD. 
Subjects with psychiatric disorders (i.e. major depression) or 
other conditions (i.e. brain tumors) were not considered for 
this study. The exclusion criteria were ongoing infections, 
fever, allergies, or the presence of other serious medical con-
ditions (autoimmune, cardiac, pulmonary, endocrine, and 
chronic infectious diseases and neoplasms). Neither the pa-
tients nor the healthy control subjects were receiving immu-
nosuppressive drugs or vaccinations for at least 6 months 
prior to inclusion in the study or anti-inflammatory analge-
sics the 2 days prior to the extraction of the blood sample. 
The ethics committee of the Alava University Hospital, 
Spain has approved this study. All patients gave their written 
consent to participate in the study, which was conducted 
according to the provisions of the Helsinki declaration. After 
written informed consent was obtained, venous blood sam-
ples (10 mL) were collected from the volunteers, after which 
the mood scales and cognitive tests were performed. Healthy 
volunteers with an MMSE score greater than 26 were re-
cruited from the community through advertisements, nonre-
lated members of the patient’s families and caregiver’s rela-
tives. 

Image Acquisition  

MRI scanning was performed on a 1.5 Tesla scanner 
(Magnetom Avanto, Siemens). Diffusion weighted imaging 
(DWI) sequence parameters were as follows: slice thickness 
= 5mm, 19 slices, TR=2700ms, TE=88ms, matrix 120/100, 3 
averages, b=1000 and 30 gradient directions.  
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Image Preprocessing  

DWI images have been processed using FMRIB software 
library (FSL)1 tools as follows: First, the brain extraction and 
eddy current correction procedure were realized using FSL's 
BET and eddy currents functions. Second, a diffusion tensor 
imaging (DTI) volume was created fitting a diffusion tensor 
model at each voxel. In DTI, diffusion is characterized by 
the eigenvalues of the three principal diffusion directions, 
denoted !1,!2,!3( ) , Fractional anisotropy (FA) is comput-
ed as the ratio: 

FA = 1
2

!1!!2( )2+ !1!!3( )2+ !2!!3( )2

!1
2 +!2

2 +!3
2

. 

FA values range between 0 and 1. The FSL DTIFIT tool 
has been used to compute the FA volume. Then, each FA 
volume was registered to the standard space FMRIB58_FA 
template. We did not perform spatial smoothing. Finally, FA 
mask [27] is created as the union of the individual masks 
obtained by applying a threshold FA > 0.60, to eliminate 
voxels which are not pure white matter. This FA mask con-
tains 96.045 voxels. It is applied to each volume to extract 
the input data for eigenanatomy analysis. 

Biological Markers (BIO) 

We selected biological markers for analysis based on the 
on their relevance to BD and AD in the literature, i.e. studies 
on inflammation [9-13, 28]. After extracting plasma from 
blood samples, inflammatory cytokines Interleukins 1 and 6 
(IL-1, IL-6) and Tumor Necrosis Factor (TNFα) were deter-
mined by enzyme immunoassay (EIA). Oxido nitrosative 
parameters (nitrites and malondialdehyde (MDA)) were also 
analyzed in plasma samples. Cytokine levels were measured 
by EIA using reagents in kit form for TNFα (cat. 589201), 
Interleukin-1β (cat. 583311) (IL1β) and Interleukin 6 (cat. 
501030) (IL6) from Cayman Chemical Europe, Tallinn, Es-
tonia. Plasma levels of TNFα, IL1β and IL6 were measured 
in a 96-well plate and read at 405 nm following manufactur-
er's instructions. Nitrites (NO-

2), the final and stable product 
of nitric oxide, were measured using the Griess method, 
where samples are incubated in acidic solution with sulfanil-
amide and N-(1-naphthyl) ethylenediamine dihydrochloride 
(NEDA). The nitrites are converted into a pink compound 
that is measured photometrically at 540nm (Synergy 2, Bio-
tek). Lipid peroxidation, the final product of the reaction of 
oxidonitrosative molecules with lipidic components of cells, 
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was determined by Thiobarbituric Acid Reactive Substances 
(TBARS) assay (Cayman Chemical Europe, Tallinn, Esto-
nia), based on the reaction of malondialdehyde (MDA) and 
thiobarbituric acid (TBA) under high temperature (95 ºC) 
and acidic conditions. The MDA-TBA adduct formed is 
measured colorimetrically at 530-540 nm (Synergy 2, Bio-
tek). Plasma BDNF levels were measured using a BDNF 
Sandwich ELISA Kit, according to the manufacturer’s in-
structions (Millipore, USA, Cat. No. CYT306). Serum NGF 
levels were measured with an enzyme-linked immunosorbent 
assay (ELISA) method according to the manufacturer’s in-
structions, using a ChemiKineTM NGF Sandwich ELISA 
Kit (Millipore, USA, Cat No CYT304). All samples were 
assayed in duplicate. All plasma NF levels are expressed as 
pg/mL.  

Eigenanatomy Feature Extraction  

It is computed by the partial sparse canonical correlation 
analysis (PSCCAN) [23] provided in the ANTS open source 
neuroimage suite2. PSCCAN enriches the sparse canonical 
correlation analysis (SCCAN) with the ability to remove 
confound variables, such as age and gender. SCCAN looks 
for the projection maximizing the correlation between two 
datasets of paired observations given by matrices X and Y of 
dimensions n! p  and n!q , respectively, where n  is the 
number of subjects in the study; in imaging studies p is the 
number of voxels, q  is the number of measurements to be 
correlated with, often p >> q  and p >> n . Formally, 

SCCAN looks for the projection directions !X  and !Y  
maximizing the Pearson's correlation after the whitening 
transform of the datasets, i.e.  

x*, y* = argmax
!X ,!Y

!X
T!XwYw

!Y

!X !y

,
                (1) 

subject to sparseness constraints on the image eigenvectors 
!X 1

< s , where .
1

 denotes the  norm, and s is the 

sparseness level, !XwYw
= Xw

TYw  is the correlation matrix of 

the datasets after whitening, i.e. Xw = X!XX
1 2  and 

Yw =Y!YY
1 2 . PSCCAN considers also the confound varia-

bles in matrix Z of dimensions n!q ' , seeking the optimal 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

2 http://picsl.upenn.edu/software/ants/ 

Table 1. Demographic data (mean and standard deviation for each group).  

 HC AD BD 

M/F 15 / 11 20 / 17 9 / 23 

Age 72.81 ± 8.70 78.70 ± 5.86 68.88 ± 8.61 

Education (0-5) 3.92 ± 1.14 3.33 ± 1.00 3.29 ± 1.14 
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correlation after removing the effect of the confounding var-
iables, i.e. 

x*, y* = argmax
!X ,!Y

!X
T!XwYw

\Z !Y

!X !Y

,
               (2) 

where !XwYw
\Z  is the variance-covariance matrix of the whit-

ened residuals of the data after removing the confounding 
variables, Xw = X !XX

\Z( )
"1/2  and Yw =Y !YY

\Z( )
"1/2 . The residual 

covariance is computed as !XwYw
\Z = XTY " XTZwZw

TY . Opti-
mization of equation (2) is achieved by a gradient descent 
algorithm including a soft-max sparseness regularization at 
each step [23]. We only consider confound variables in rela-
tion with the imaging data contained in X. In our study, the 
Y matrix is composed of the values corresponding to one 
biomarker, hence we perform independent localizations for 
each; the confounding variables in Z are age and gender. The 
projection coefficients of the images into PSCCAN pseudo-
eigenvectors are used as feature vectors for classification. 
The computation of PSCCAN pseudo-eigenvectors does not 
use class information. It can be assumed as a class independ-
ent data transformation, hence the entire process has no cir-
cularity because selection (i.e. eigenanatomy) is independent 
of analysis (i.e. classification). Therefore PSCCAN can be 
performed once for all cross-validation experiment. In the 
experiments we have set to 12 the number of sparse pseudo-
eigenvectors, and sparseness ratio is set to s=0.1, after a heu-
ristic exploration of the localization results obtained with 
several setting of these parameters.  

Support Vector Machines (SVM) 

Support Vector Machines (SVM) have become a sort of 
standard classifier for the neuroscience community [29-31], 
owing to a number of theoretical and computational merits 
[32], and to very successful implementations, such as the one 
provided in Matlab used in this study. In brief, SVM builds a 
supervised two-class classifier that separating training data 
samples with the maximal margin hyperplane achieving 
maximal generalization to new unseen data samples. The 
hyperplane discrimination function is defined by a set of 
support vectors, often localized at the boundaries between 
classes. The kernel trick allows define a linear discriminant 
in a high dimensional space, effectively obtaining a non-
linear discriminant function when the data is not linearly 
separable. Training of SVM classifier is achieved by quad-
ratic programming, minimizing the norm of the discriminat-
ing hyperplane parameters, subject to classification error 
constraints. Linear SVM have two advantages: (a) It does not 
require kernel parameters model selection, thus introduces 
no bias in the training process due to fortunate model selec-
tion, which often is tricky, (b) Allows to focus on the relative 
detection power associated to the features proposed, not in 
the optimal classifier, assuming that feature performance 
ranking will be invariant to the classifiers. Nevertheless, at 
reviewer's request and for the sake of completeness we re-
port also results with radial basis function RBF SVMs. 

Experiments  

In order to evaluate the detection power of the FA pseu-
do-eigenvectors computed by PSCCAN maximally correlat-
ed with each biological marker, we perform 10-fold cross-
validation of SVM classifiers over the datasets feature vec-
tors obtained from projecting the FA volumes on them for 
each possible contrast of classes: HC vs. AD, HC vs. LOBD, 
AD vs. LOBD, and HC vs. AD+LOBD. In a 10-fold cross-
validation approach the dataset is partitioned in 10 folds, 
each fold is used as the test set for the classifier build from 
the remaining nine folds. Performance results reported are 
the average values of the test performance obtained on each 
folder. No model selection is needed for the linear SVM. 
Model selection by grid search for the RBF SVM was car-
ried out on a bootstrapped sample from the training dataset 
in each cross-validation fold, due to the small sample size. 

Classification Performance Measures  

To quantify the results we measured: (a) accuracy ((TP 
+TN)/N); (b) specificity (TN/(FP +TN)); (c) sensitivity 
(TP/(TP +FN)) and (d) F-score score is the harmonic mean 
of precision and sensitivity (2TP/(2TP +FP+FN)), where TP 
is the number of true positives: number of AD or BD patient 
volumes correctly classified; TN is the number of true nega-
tives: number of control volumes correctly classified; FP is 
the number of false positives: number of class 1 classified as 
class 0; FN is the number of false negatives: number of class 
0 classified as class 1. 

RESULTS 

Classification Results 

Classification performance results are presented in Table 
2 providing the accuracy, F-score, sensitivity, and specificity 
for each feature set corresponding to the coefficients of the 
optimal sparse eigenvectors correlated with the biomarker 
values. We provide the results for linear SVM and the best 
RBF SVM results. It is easy to assess that there is a signifi-
cant improvement (t-test, p<0.001) of non-linear SVM at the 
cost of careful model search. However, these results do not 
change the relative order of blood biomarkers, hence for our 
purposes linear SVM provides the same information as non-
linear SVM. Best discrimination of AD vs. LOBD is 
achieved on the feature vectors extracted from MDA, this 
result is statistically significant (F test computed over of all 
paired results per biomarker, p<0.01) for all performance 
measures. This result is the best overall, achieving more than 
85% average accuracy. In independent experiments using 
biomarker values as classification features the accuracy in 
the AD vs. LOBD classification achieved was 71% and 61% 
for the linear and RBF SVM, respectively. Therefore, eige-
nanatomy greatly boosts the discrimination power. Regard-
ing HC vs. AD, both MDA and IL6 provide the best features, 
a t-test computed over their paired results shows no signifi-
cant difference between them (p>0.1). We think that features 
providing performance results below 70% are too weak to 
attribute them discrimination power. Discrimination of joint 
AD and LOBD from HC is very weakly achieved, maybe 
due to the SVM sensitivity to unbalanced datasets, pointing 
to the lack of a common pathophysiological source. Another 
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Table 2. Classification cross-validation average results for the PSCCAN coefficients maximally correlated to each plasma bi-
omarker. Columns: L Linear SVM, RBF best SVM-RBF result obtained after model search for the RBF width, enclosed 
in brackets.  

  Accuracy F score Sensitivity Specificity  

  L RBF L RBF L RBF L RBF 

MDA HC vs. AD 76.6 81.4 65.0 72.4 65.0 71.7 83.3  84.4 

 AD vs. LOBD 78.3 85.3 80.9 86.7 80.8 87.3 81.6 87.4 

 HC vs. D+LOBD 67.1 76.3 52.2 57.7 65.0 70.7 69.3  73.0 

 HC vs. LOBD 58.0 66.8 33.3 40.1 35.0 39.6 81.6  85.4 

BDNF HC vs. AD 68.6 74.7 59.0 61.7 70.0 75.2 72.5  77.4 

 AD vs. LOBD 69.6 76.7 72.1 77.9 70.0 74.2 78.3 84.1 

 HC vs. DAD+LOBD 60.5 70.1 46.2 51.5 70.0  75.8 63.3 67.5 

 HC vs. LOBD 49.5 60.4 54.6 58.2 70.0  73.8 43.3  58.6 

NOx HC vs. AD 65.7 72.3 55.2 59.7 65.0  68.9 71.6  76.3 

 AD vs. LOBD 66.3 73.3 66.9 72.2 63.3  67.4 80.0  86.1 

 HC vs. AD+LOBD 65.8  71.3 49.7 58.2 60.0  62.0 71.6  75.5 

 HC vs. LOBD 56.0 65.6 52.0 59.7 65.0  71.4 56.6  61.6 

Glu HC vs. AD 69.0 76.7 58.0 61.6 70.0  75.3 75.8  81.3 

 AD vs. LOBD 74.6 81.1 77.3 85.3 79.2  83.4 75.0  81.1 

 HC vs. AD+LOBD 69.1 78.7 45.3 51.0 55.0  61.3 76.6  83.1 

 HC vs. LOBD 58.5  67.1 40.3 45.2 50.0  53.2 76.6  81.6 

IL1β HC vs. AD 66.6  72.9 55.6 61.3 65.0  69.8 72.5  76.0 

 AD vs. LOBD 71.3  79.1 73.7 78.4 71.7  76.4 76.6 80.8 

 HC vs. AD+LOBD 64.3  70.4 45.5 50.3 65.0  70.3 66.6  70.5 

 HC vs. LOBD 54.5  63.2 48.0 54.4 65.0  70.3 63.3  70.6 

IL6 HC vs. AD 75.3  80.7 66.6 73.0 70.0  74.1 83.3 87.6 

 AD vs. LOBD 71.6  78.2 71.9 78.3 68.3  73.2 81.6  87.3 

 HC vs. AD+LOBD 69.3  76.4 47.0 52.6 65.0  69.8 73.0  77.8 

 HC vs. LOBD 60.5  68.9 51.6 55.3 50.0  55.6 81.6  87.4 

TNFα HC vs. AD 71.3  78.3 69.4 75.1 80.0  86.0 70.8  75.0 

 AD vs. LOBD 66.0  72.5 66.7 73.3 64.2  70.3 78.3  81.8 

 HC vs. AD+LOBD 63.4  70.0 45.3 50.7 65.0  69.1 66.6  70.1 

 HC vs. LOBD 49.5  55.3 54.7 60.7 75.0  80.0 56.6  62.0 

 
remarkable result is the very weak detection of LOBD vs. 
AD for all biomarkers. 

Localization Results 

Anatomical localization of the effects has been per-
formed using the John Hopkins University ICBM-DTI-81 
White Matter Labels available in the FSL neuroimage suite. 

Table 3 contains the localizations for the principal pseudo-
eigenvectors for each biomarker. Localizations are expressed 
as the area percentage falling in the indicated region. The 
middle cerebellar peduncle contains effects from almost all 
pesudo-eigenvectors. For visual assessment, we provide in 
(Fig. 1) the localization of the principal pseudo-eigenvector 
over a FA template provided in the FSL suite in the sagittal, 
coronal and axial middle views. 
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Table 3. Localization of clusters in the principal pseudo-eigenvectors. Each entry correspond to the percentage of the falling in the 
white matter brain area. 

 MDA BDNF Nox Glu IL1β IL6 TNFα  

Posterior limb of internal capsule R 10.14   2.13  4.03   

Posterior limb of internal capsule L 5.75 3.27 7.58 4.95 3.85    

Superior corona radiata R 5.92    2.75    

Superior corona radiata L 9.48   4.33 2.17    

Middle cerebellar peduncle 5.01 5.23 6.61  4.64 6.89 4.01  

Retrolenticular part of internal capsule L 2.89       

Superior longitudinal fasciculus R 2.67 2.39 2.46 2.30     

Superior longitudinal fasciculus L 2.54  4.50      

Posterior thalamic radiation (include optic radiation) R  4.76 4.01 4.49  3.95   

Posterior thalamic radiation (include optic radiation) L   3.08  3.33 3.43   

Genu of corpus callosum  3.80 2.31    5.53  

Splenium of corpus callosum  3.07  10.63 3.23 13.16 15.06  

Body of corpus callosum  2.52  8.05 15.48 12.78 10.60 

Cerebral peduncle R  2.23   3.62  2.80  

Cerebral peduncle L   2.67    3.41  

Corticospinal tract L   2.79     

Sagittal stratum (include inferior longitidinal fasciculus R   2.47     

Retrolenticular part of internal capsule L   2.17  2.31   

Anterior limb of internal capsule L     2.93   

 
DISCUSSION 

This study was designed to investigate the localization in 
brain white matter of effects related to plasma biomarkers by 
eigenanatomy analysis [22, 23] that may offer insights on the 
common and differential pathophysiological effects of 
LOOBD and AD [33-35], which may allow a more accurate 
diagnosis supported by computer aided diagnosis (CAD) 
systems on the eigenanatomy coefficients. This study was 
motived by the increasing prevalence of LOBD and the fact 
that it shares many diagnostic features with AD [4, 36-38]. 
To our knowledge this is the first such study analyzing a 
wide range of biological (inflammatory, oxido-nitrosative 
and neurotrophic) measures for this purpose.  

 Peripheral markers related to inflammation, oxidative 
stress, and neurotrophins have been related to clinical symp-
toms, cognitive decline and illness severity in BD [1, 39] as 
well as in AD [40]. It has been suggested that inflammation 
and oxidative stress do not cause AD or BD by themselves, 
but probably during aging they reinforce many interdepend-
ent factors related to these complex neuropsychiatric disor-
ders [3].  

In the present study, most of the classification perfor-
mance results for the baseline linear SVM classifier were 

well below 80%, which indicates very low detection power 
of the pseudo-eigenvectors. The only exception are the fea-
tures correlated with the oxidative stress marker MDA. 
Cross-validation experiments with non-linear SVM carried at 
the request of the reviewers did improve results significantly 
with the additional cost of model selection. Moreover, the 
relative order of the biomarkers features was not affected, so 
the qualitative information is the same for linear and non-
linear SVM. Therefore, localizations reported in Table 3 for 
MDA have some additional value over the other biomarkers. 
The main effects are found in the posterior limb of the inter-
nal capsule, and its retrolenticular part, which are strongly 
related to the sensory and motor areas, probably related to 
the degeneration of these abilities, which maybe common to 
both LOBD and AD, as well as aged controls. Interesting 
effects are found in the Superior longitudinal fasciculus con-
taining connections between the frontal, parietal, occipital 
and temporal lobes. This network has been suggested to be 
involved in attention and language, motor behavior and so-
matosensory information. Abnormalities in these tracts may 
be related to some of the cognitive deficits found in BD [41] 
and cognitive performance in AD [42]. Interestingly, MDA 
is not related to the corpus callosum structures, so that no 
effect on interhemispheric communication are detected by 
our approach, because other biomarkers which show some 
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localizations in the corpus callosum have very low classifica-
tion performance. Finally, superior corona radiata effects are 
to be expected as it has been observed that aging has a defin-
itive effect on DTI in this white matter structure [43], never-
theless it deserves further exploration in order to assess 
which role they play in the discrimination between LOBD 
and AD.  

Limitations 

The sample is not well balanced, there are diverse sample 
sizes of AD, BD and HC. The feminine BD sample is much 
larger. 

CONCLUSION 

The application of eigenanatomy to diffusion imaging 
correlated with plasma biomarkers has allowed to identify 
effects in white matter structures in agreement with the liter-
ature, providing as well a computer aided diagnostic tool 
aiding in the discrimination between late onset bipolar disor-
der and Alzheimer's disease.  

Future work will be addressed to improve exploration of 
the parameters involved, number of eigenvectors, classifiers, 
sparseness parameter, as well as to use multimodal data to 
improve results and interpretation, including anatomical T1 
weighted data.  
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