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1. Introduction

• PhD. carried out in an university-company 
collaboration context:

– Grupo de Inteligencia Computacional GIC 
(research group from The University of The 
Basque Country).

– Innovae Vision (spin-off company created by early 
GIC members).
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1. Introduction
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Fig 1.1: Research context.
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1. Introduction

• Research objectives:

– Real-time hand gesture recognition in a Tabletop 
context.

– Design of a stable and efficient skeleton 
computation algorithm.

6
Grupo de Inteligencia Computacional 

(GIC)



1. Introduction

2. Motivation

3. Theoretical Background

4. Theoretical Results

5. Experimental Results

6. Conclusions

7
Grupo de Inteligencia Computacional 

(GIC)



2. Motivation

• Interactive Multimedia Tabletops (IMT) as a 
new paradigm in natural HCI.

– Computer system with a tabletop shape.

– Natural interaction methods, usually multimodal.

– Multiple simultaneous users.

– Oriented to multimedia as the basic data type, 
with a visually appealing GUI.
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2. Motivation
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Fig. 2.1: Tabletop examples.
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2. Motivation

• Tabletop design proposal including hand 
gesture interaction.

– Hand gestures are natural and powerful.

– They are contactless.

– They can be combined with multi-touch 
interaction.
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2. Motivation

• The background removal problem is avoided 
by our physical system design using polarizing 
filters.

– Removes the dynamic GUI from the camera view.

– Mostly avoids environmental lighting issues.

– Foreground segmentation becomes a trivial task.
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2. Motivation
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Fig. 2.2: Camera and tabletop setup.
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2. Motivation
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Fig. 2.3: Real view from the camera point of view.
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2. Motivation
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Fig. 2.4: Camera view (polarized).
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2. Motivation
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Fig. 2.5: Thresholded binary image.
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2. Motivation

• We are interested in dynamic gestures.

– Hand trajectory.

– Hand shape variations.
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2. Motivation
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Fig. 2.6: Pose change dynamic gesture example.



2. Motivation

• Challenges in hand gesture recognition on 
tabletops:

– Hands are biological amorphous objects subject to 
many kind of deformations.

– Deal with scale and three-dimensional rotation.

– Handle occlusions produced in simultaneous 
interaction.

– Distinguish between user’s hand, wrist and arm.
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2. Motivation

• Skeleton as shape representation method:

– Natural.

– Flexible.

– Robust to non-linear deformation.

– Robust to rotation and scale changes.

19
Grupo de Inteligencia Computacional 

(GIC)



1. Introduction

2. Motivation

3. Theoretical Background

4. Theoretical Results

5. Experimental Results

6. Conclusions

20
Grupo de Inteligencia Computacional 

(GIC)



3. Theoretical Background

• Intuitive Skeleton Def. (Grassfire transform): 
“*Imagine that we have a grass field, where 
the field has the form of a given shape. If one 
sets fire at all points on the boundary of that 
grass field simultaneously, then the skeleton is 
the set of points where two or more 
wavefronts meet”.

*Extracted from the Wikipedia
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3. Theoretical Background
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Fig. 3.1: Hand shape skeleton example.
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2. Motivation

• Advantages of skeletons for shape 
representation and recognition:

– Flexible.

– Natural.

– Easily scale and rotational invariant.

– Robust to some non-linear deformation, which 
can be very disturbing for other approaches.
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2. Motivation

• Disadvantages of skeletons for shape 
representation and recognition:

– Low robustness under noise in the shape 
boundary.

– Computational complexity.

– Ambiguity of the skeleton if the Distance 
Transform (DT) Value is not included.

– Complexity of most matching algorithms, based in 
attributed graph homomorphism.
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3. Theoretical Background

• Raw Skeleton computation techniques:
– Marching front skeleton (simulate grassfire 

transform):
• Iterative procedure, high computational cost.

• Not robust under rotation.

– Distance Transform function skeleton:
• Connectivity not guaranteed.

• Efficient, O(n), with n=number of pixels in shape.

– Voronoi skeleton:
• O(nlogn), n=number of Voronoi sites.

• Especially sensitive to noise in the boundary.
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3. Theoretical Background
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Fig. 3.2: Hand shape Distance Transform Function.
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3. Theoretical Background

• Def. Voronoi Tessellation of a point set (V):

– Partition of the space into convex regions 
(Voronoi polygons) around each of the points in 
the set, called Voronoi sites, so that every point in 
a region is closer to his Voronoi site than any 
other Voronoi site.

• Def. Voronoi edge (sij):

– Limit between two Voronoi polygons. All the 
points in the Voronoi edge are equidistant to two 
Voronoi sites (i,j). 
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3. Theoretical Background
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Fig. 3.3: Voronoi Tessellation of the shape boundary 

curve point set.
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3. Theoretical Background

• Key Def. Skeleton stability: 

– Similar shapes, in terms of the Hausdorff distance, 
must produce similar skeletons.
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3. Theoretical Background

• There are some post-processing of the raw 
skeleton:

– Obtain more stable and concise skeletons.

– Post-processing techniques:

• Skeleton pruning.

• Skeleton ligature analysis.
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3. Theoretical Background
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Fig. 3.4: Skeletonization procedure.
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3. Theoretical Background
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Fig. 3.5: Raw skeleton of a hand shape computed 

using a DT based skeletonization algorithm.
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3. Theoretical Background
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Fig. 3.6: Processed skeleton of an open hand 

shape.
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4.1. Efficient and Stable Voronoi
Skeleton

I. Subsample the shape boundary curve C of the 
shape F, obtaining polygon P.

II. Compute the raw Voronoi Skeleton V using the 
vertices in P as Voronoi sites (Vsites).

III. Prune the raw Voronoi Skeleton in two stages.

i. Remove the Voronoi edges not completely contained in F.

ii. Remove the Voronoi edges not fulfilling the Discrete 
Curve Evolution criterion.

37
Grupo de Inteligencia Computacional 

(GIC)



Efficient and Stable Voronoi Skeleton: The 
Algorithm
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I. Shape boundary curve subsampling
(Subsample (C))

• Reduces the Voronoi Tessellation computation 
cost.

• Improves the stability of the skeletonization
procedure reducing the effect of minor noise in 
the shape boundary curve.

• Optional step.

• The sampling criterion must guarantee that the 
Voronoi skeleton obtained from this subsampling
produces a close approximation of the original 
shape’s Voronoi skeleton.
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I. Shape boundary curve 
subsampling (Subsample (C))
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Fig. 4.1.1: Uniform shape boundary sampling.
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II. Raw Voronoi Skeleton computation 
(VoronoiTessellation (Vsites))

• Computational complexity is O(nlogn), with n 
the number of Voronoi sites.

• Any conventional algorithm can be used.

• Only the Voronoi edges at least partially 
contained in the shape constitute the raw 
Voronoi Skeleton.
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II. Raw Voronoi Skeleton computation 
(VoronoiTessellation (Vsites))
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Fig. 4.1.2: Raw Voronoi Skeleton.
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III.i. First pruning stage (Shape(αij))

• Voronoi edges not completely contained 
inside the shape are removed.

• Only endpoints need to be checked to decide 
if the whole Voronoi edge is contained in the 
shape or not (Shape(αij)).

– Mathematical proof provided.

• Extremely fast to check.
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III.i. First pruning stage (Shape(αij))
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Fig. 4.1.3: Example of the first pruning stage of Beris

algorithm.
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III.ii. Second pruning stage 
(DCECric(sij))

Def. Discrete Curve Evolution (DCE): 

– Shape boundary curve subsampling method.

– Produces a polygon which keeps the most 
prominent shape features.

– Iterative procedure which removes the point from 
the original shape boundary curve with less 
contribution to the shape at each step.

– The DCE polygon (DCE(C)) is composed of points 
from the original shape boundary curve.
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III.ii. Second pruning stage 
(DCECric(sij))
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Fig. 4.1.4: DCE computation iterative procedure.



III.ii. Second pruning stage 
(DCECric(sij))
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Fig. 4.1.5: Convex hull of the DCE polygon.
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III.ii. Second pruning stage 
(DCECric(sij))

1. The convex hull of the DCE polygon 
(ConvexHull(DCE(C))) is obtained, with 
edges EDCE.

2. Each ei in EDCE is associated to the 
subsequence of the original shape boundary 
curve points between the endpoints of ei.

3. If the closest Voronoi sites to a Voronoi edge 
are assotiated to the same edge in EDCE the 
edge is removed.
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III.ii. Second pruning stage 
(DCECric(sij))
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Fig. 4.1.6: DCE skeleton pruning result.
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Visualization of the algorithm
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Red: Voronoi edges 

removed by first pruning.

Yellow: Voronoi edges 

removed by the DCE 

pruning.

Green: Final skeleton.

Fig. 4.1.7: Skeleton pruning steps.
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4.2. Formal statement of some 
properties of the algorithm
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5. Experimental Results

Three kind of results:

1. Check the real-time performance of the 
algorithm. The efficiency of the algorithm.

2. The stability of the our skeletons.

3. The effectiveness of our approach as a feature 
extraction for shape classification.
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5.1. Real-time Performance

• Real-time implementation details :

– Written in C++, using Microsoft DirectShow and 
Open Computer Vision (OpenCV) libraries.

– Non optimized prototypic code.
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5.1. Real-time Performance
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Fig. 5.1.1: Real-time prototype flow schema.
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5.1. Real-time Performance

• Test environment: 

– Intel Pentium IV processor (3.0 GHz).

– 1GB memory.

– Windows XP SP2 32 bit.

• Performance of the implementation: 

– 60 FPS for a 320x240 video capture resolution.

– 24 FPS for a 640x480 video capture resolution.
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5.1. Real-time Performance
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Fig. 5.1.2: Real-time prototype in use.
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Experimental image database

• Hand gesture image sequences to test the 
recognition performance of different 
algorithms in a Tabletop hand gesture 
interaction context.

• 3 dynamic gestures: 
• Grab an object.

• Point an object.

• Turn a page.
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Experimental image database

• 15 frames for each gesture sample sequence.

• 200 gesture sequence samples for each of the 
3 gestures.

• 9000 images in total (15x200x3).

• Synthetic image database obtained using 
Poser® and modifying randomly translation, 
rotation, scale and deformation parameters 
from a basic prototypic gesture.
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Database image samples
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Fig. 5.2.1: Experimental image database examples.



Database animation sample
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Fig. 5.2.2: Turn page gesture sample sequence.
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State of the art algorithm for 
comparison (BAI)

• Uses a basic DCE pruning.

• Focused in efficiency and stability of the 
skeleton computation.

• In these tests we used the Matlab
implementation of the algorithm provided by 
the authors.

• Our approach is denoted as BERIS, and the 
state of the art alternative is denoted as BAI.
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5.2. Stability

• Two measures:
– Static: Number of skeleton branches.

– Dynamic: Difference in the number of skeleton 
branches between consecutive images in a gesture 
sample.

• Test variables:
– DCE pruning values: 15, 20, 25.

• Result grouping:
– Average for each of the three gestures.

– Global average.
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Static measure: Average branch number

68

BERIS BAI

Average Std. dev. Average Std. dev.

Grab 17.67 3.14 24.55 3.04

Point 12.61 2.52 22.73 3.03

Turn Page 14.92 3.45 24.33 4.55

Global 15.07 3.03 23.87 3.54

Table 5.2.1: Average branch number per gesture sample, for DCE pruning 

value 25 (table 5.3 in the Thesis Report).
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Dynamic measure: Average branch 
difference between consecutive images

69

BERIS BAI

Average Std. dev. Average Std. dev.

Grab 2.10 1.72 2.79 2.16

Point 1.75 1.47 3.24 2.50

Turn Page 2.58 2.20 3.89 3.06

Global 2.15 1.80 3.30 2.57

Table 5.2.2: Average branch number difference between consecutive images 

in each gesture sample, for DCE pruning value 25. (Table 5.6 in the Thesis 

Report).
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Comments on stability 

• BERIS produces skeletons with less number of 
branches than BAI.

– Our approach produces more concise skeletons.

• Skeletons of similar shapes have less branch 
number variation for BERIS than BAI.

– Our approach produces more stable skeletons.
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5.3. Feature vector for shape recognition

• The skeleton is represented by an Skeleton Graph:

– Graph nodes -> skeleton end points and joint points.

– Graph links -> skeleton branches.

• The attributes of each node are its normalized 
position and normalized distance transform value.

• Shape recognition based in a greedy graph matching 
procedure, using only graph nodes.
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Labeled Skeleton and Skeleton 
Graph

Labeled skeleton:

– Blue dots: End points.

– Red dots: Joint points.

– White pixels: branch points.

Skeleton graph:

– Green dots: Graph nodes (end 
and joint points).

– White segments: Graph links.

(r, θ, dt)
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5.3. Feature vector for shape recognition

• Two kind of classifiers:

– K-NN

• 1-NN, 3-NN, 5-NN.

• Whole database.

– Probabilistic Neural Networks (PNN)

• Two-fold crossvalidation on the 40% of the database.

• Two values of sigma: 0.1 and 1.

• Three DCE pruning values: 15, 20, 25.
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5.3. Feature vector for shape recognition

• Initially one class for each frame (15 per 
gesture, 45 in total).

• Then two class aggregations in order to 
improve effectiveness:

– Consecutive frames of each gesture are grouped 
into 5 image packages, with three classes per 
gesture (9 classes in total)

– One class for each gesture (3 gestures in total).
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K-NN Results

• Our best results were obtained using a DCE 
pruning value 15, alpha value 0.75 and 5-NN.

76

Class number BERIS BAI

45 35.42 % 30.17 %

9 73.38 % 67.85 %

3 94.57 % 93.25 %

Table 5.3.1: Shape recognition results using a Greedy Graph matching 

algorithm (Extracted from tables 5.10, 5.11 and 5.12 of the Thesis Report). 
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K-NN Results

77Fig. 5.3.1: Confusion Matrix for 45 Classes.



K-NN Results

78Fig 5.3.2: Confusion Matrix for 9 Classes.



PNN-Results

• Our best results were obtained using a DCE 
pruning value of 15, alpha value 0.75 and 
sigma value 0.1.
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Class number BERIS BAI

45 30.72% 27.44%

9 72.00% 58.06%

3 87.94% 80.11%

Table 5.3.2: Shape recognition results using a Greedy Graph matching 

algorithm (Extracted from tables 5.23, 5.24 and 5.25 of the Thesis Report). 
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Some comments on the classification 
results

• Shape classification using the skeletons 
produced by our approach (BERIS) as feature 
vector outperforms using BAI.

• Skeleton graph node position is more 
important for shape recognition than the DT 
value (alpha value 0.75).

• As the number of training examples grows, 
the results improve, but the computational 
cost is also higher (5-NN).
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Some comments on the classification 
results

• A strong DCE pruning improves over a gentle 
DCE pruning.

• Dynamic gesture recognition would improve 
the recognition rate, because of the high 
similarity between several poses of different 
gestures (i.e., grab and turn page).
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6. Conclusions

• Natural interaction and Tabletops is the 
context of this PhD Thesis.

• Hand gesture recognition in tabletops is the 
explored topic.

• Efficient and stable skeleton computation 
algorithm is the main contribution of the 
present work.
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6. Conclusions

• Our skeleton computation and pruning algorithm is 
efficient and stable under noise in the shape 
boundary.

• Our approach improves the current state of the art.

• Our approach permits the implementation of hand 
gesture recognition in real-time for tabletops.
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6. Conclusions

• Further research topics include:

– Exploring different pattern recognition approaches using 
skeletons.

– Combining hand gestures with multi-touch interaction.

– The development of an abstraction layer to manage 
multiple user interaction in tabletops.
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