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Abstract

@ The contents of the thesis deals with:

e proposal of new feature extraction approaches
e new influence maximization heuristic
e their application to social networks
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Introduction

Introduction

Definitions

Social Network

A social network is a social structure made up of a set of actors
that are related according to some criterion.

G(V,E)

G: Social Graph
V: actors
E: relationships
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Introduction

Introduction

Definitions

Social Network

A social network is a social structure made up of a set of actors
that are related according to some criterion.

G(V,E, W)

G: Social Graph
V: actors

E: relationships
W: labels
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Introduction

Introduction

Definitions

G(V,E, W)

V: actors \ E: relationships \ W: trust values
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Introduction

Introduction

Definitions

@ the degree of subjective belief about the behaviors of a
particular entity.

@ the expectation that a service will be provided or a
commitment will be fulfilled.

@ confidence that one will find what is desired from another,
rather than what is feared.
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Introduction

uncertainy
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Introduction

Introduction

Definitions

Recommendation Systems

@ Information filtering system that seek to predict the 'rating’ or
'preference’ that a user would give to an item.

12/76

José David Nifiez Gonzélez Computational Intelligent Methods for Trusting in Social Networks



Introduction

Introduction

Recommendation Systems

-

.@ —

RECOMMENDATION
SYSTEM

13/76

José David Nifiez Gonzélez Computational Intelligent Methods for Trusting in Social Networks



Introduction

Introduction

Influence Maximization
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Introduction

Introduction

Definitions

Influence Maximization

@ Find the minimum K seed nodes (users) in a social network
that could maximize the spread of influence.
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Trust Prediction State of the Art
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Trust Prediction State of the Art

Experimental work

Trust - Properties
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Trust Prediction State of the Art

Experimental work

Trust - Metrics

Binary state metrics
Discrete scale metric
Probabilistic metric

Hybrid metric

Negative values
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Trust Prediction State of the Art

Experimental work

Trust - Applications

Sociology
Risking betrayal
Subjectivity
Philosophy .
Context- Economics
dependent moral Incentive-based
relationship selfishness
Multidisciplinary
Concept of Trust
Paychalcny i
Eoanitua automation
A reliability
Organizational
management

risk assessment

lin-Hee Cho, Ananthram Swami, and Ing-Ray Chen
A Survey on Trust Managementfor Mobile Ad Hoc Networks
IEEE COMMUNICATIONS SURVEYS & TUTORIALS,

VOL. 13, NO. 4, 2011 (PAGE 563)
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Trust Prediction State of the Art

Experimental work
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Problem definition

@ Given a Web of Trust (WoT) associated to some social
system, specificed by weighted graph G = (U;E;T), where
there is a trust value associated with each edge, we want to
predict how a User A would trusts another User B, positive or
negatively.
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Databases

@ Epinions and Wikipedia Voted Network databases

@ Imbalanced databases

] User Id \ User Id \ Trust Value ‘

245 246 1
245 247 -1
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Pipeline
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Feature extraction |

o——o—0

11

° feature vector

Lag = {C | (C,A, tac € D)A(C,B,tcg € D)} J
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Results (Epinions)

Table 3.2: Results of cross-validation experiments on the raw reputation features
of the Epinions Database after one SMOTE iteration of database balancing - 10
and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classif. OA R | P R | P | OA R | P R | P
NB 8577 | 88.2 |1 940 | 747 | 585 | 90.02 | 100.0 | 90.0 | 0.0 | 0.0
MLP 90.03 | 97.8 | 90.7 | 549 | 849 || 89.45 | 97.5 | 90.4 | 53.1 | 82.6
RBFC 90.08 | 97.6 | 90.9 | 56.1 | 84.0 || 89.49 | 97.4 | 904 | 53.6 | 82.3
RBEN 80.84 | 07.3 1 909 | 56.2 | 82.1 || 80.49 | 974 | 90.4 | 53.6 | 82.3
SVM 90.15 | 98.1 | 90.6 | 54.1 | 86.5 || 89.49 | 97.4 | 90.4 | 53.6 | 82.3
AdaBoost | 89.74 | 97.5 | 90.7 | 548 | 82.8 || 89.49 | 97.4 | 904 | 53.6 | 82.3
JRip 00.09 [ 98.0 | 90.7 | 545 | 85.7 || 80.49 | 97.4 | 904 | 53.6 | 82.3
J48 90.12 [ 98.0 | 90.7 | 545 | 85.7 || 89.49 | 97.4 | 904 | 53.6 | 82.3
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Results (Wikipedia)

Table 3.5: Results of cross-validation experiments on the raw reputation features
of the Wikipedia Database after two SMOTE iteration - 10 and 3 features.
10 features 3 features
‘ Trust ‘ Notrust ‘ Trust ‘ Notrust
Classif. OA [ R]JP[RJPIJOA] R J[P[RI]P
NB 7131 | 81.2 ] 736 | 565 | 56.5 | 90.02 | 100.0 | 60.0 | 0.0 | 0.0
MLP 7103|758 | 758 | 639 | 639 | 60.84 | 79.1 | 729|559 | 642
RBEC | 71.27 | 76.1 | 760 | 64.1 | 642 || 69.84 | 79.1 | 72.9 | 55.9 | 64.2
RBEN [ 70.97 | 69.1 | 79.1 | 73.7 | 61.5 || 60.84 | 79.1 | 72.9 | 55.9 | 64.2
SVM 7097 | 70.1 | 79.0 | 734 | 61.8 || 60.84 | 79.1 | 72.9 | 559 | 64.2
AdaBoost | 67.46 | 889 | 67.3 | 354 | 681 || 67.42 | 87.1 | 67.7 | 38.1 | 66.3
JRip 7127 | 732|776 | 684 | 63.1 || 60.84 | 79.1 | 72.9 | 559 | 64.2
J48 7125|723 | 781 | 69.6 | 627 || 60.84 | 79.1 | 729 | 559 | 64.2
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Experimental work

Trust Prediction - Feature extraction |l
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Feature extraction |l

L(I-B = {CEL_43|!’__\(‘=+1;"\ICB= +1 }

L(I-f; = {CEL_43|!’__\(‘=+1;"\ICB= -1 }
Loy ={C € Lypltac=—1Ntcp=+1},

Leg = {Celapltac=—1Nteg=—1}.
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Feature extraction |l
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Trust Prediction State of the Art

Experimental work

Trust Prediction - Results

Table 3.6: Average performance results of cross-validation experiments with dif-
ferent classifiers over the probabilistic reputation features. (OA) Overall Accuracy,
(F1) F1 score, (AUC) area under the ROC.

Wikipedia Epinions
OA | F1 JAUC |OA ] F1 | AUC
NB 100 | 98.3 0973 | 100 | 98.7 | 0.983

MLP 00.99 | 99.1 | 0981 | 100 | 99.2 | 0.991
RBFC 100 | 98.7 | 0.965 | 100 | 99.3 | 0.971
RBFN | 99.99 | 98.6 | 0.966 | 100 | 99.4 | 0.976
AdaBoost | 100 | 99.4 | 0986 | 100 | 99.7 | 0.989
JRip 99.99 | 98.4 | 0.977 | 100 | 98.8 | 0.975
J4g 00.99 | 98.1 | 0.962 | 100 | 98.2 | 0.972
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recommendation Systems - Techniques

Colaborative Filtering: new recommendations from similarities
among users and past ratings.

Content based Filtering: based on user profile and his/her own
ratings.

Demographic Filtering

Utility Filtering

Knowledge based Filtering
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recommendation Systems - Colaborative Filtering

@ Memory-based: K-NN among similar users

o Model-based: K-NN among similar item rated previously by
users
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recommendation Systems - Content-based Filtering

similar items that users rated positively previously

36/76

José David Nifiez Gonzélez Computational Intelligent Methods for Trusting in Social Networks



State of the Art
Recommendation Systems Recipe Generation eriments
Product Recomm tion experiments

Recommendation Systems - Identified problems

Cold start
Sparsity
Subjectivity
Scalability
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Outline

© Recommendation Systems

@ Recipe Generation experiments
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recipe Generation -
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recipe Generation - Context

@ Recipe

o 5x[Time, Temperature]
o 10 variables [ry, ..., ro] € R

e Satisfaction

o lx|[fragance, softness, baking, crust]
o 4 variables [sy, ..., 5] € R*
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recipe Generation - Problem definition

@ Direct prediction: What will be the satisfaction feedback
obtained from the user for a given recipe?
o Direct mapping: ¢ (R) = S to predict the satisfaction of the
user with the quality of the bread resulting from a proposed
recipe (first question): ¢ : R0 — R*
@ Inverse recommendation: Which is the recipe that | need to
get a specific satisfaction?
o Inverse mapping: ¢! (S) = R that looks for the recipe that

would provide the desired satisfaction parameter values
(second question):¢p~! : R* — R0
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Recommendation Systems

Recipe Generation - Generated database

nlrelnlnlrslnclrlesln|nfsls|[s]s]
(02]04]1]05]09]07[1]02[07][ 1 [2]3]4]3]
synthetic database
100,000 instances
40 non-linear models
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recipe Generation - Pipeline

Models Recipe

generation generation

el

Satisfaction
calculation

| DATASET I
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State of the Art
Recipe Generation experiments
Product Recommendation experiments

Recommendation Systems

Recipe Generation - Results

1 hidden unit 525 hidden units

sl 1.4490 0.4972
52 1.7756 0.4790
s3 1.6259 0.5639
sd 1.1084 0.4832

Table 4.1: Average cross-validation error results of satifaction prediction for given
recipes: ¢(R) — 5;
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Recipe Generation - Results

1 hidden unit 525 hidden units

rl 0.4382 0.2816
r2 0.3910 0.2887
r3 0.4298 0.2919
rd 0.4080 0.2659
r5 0.4433 0.2923
6 0.4063 0.2837
r7 0.3936 0.2903
8 0.4743 0.2885
rd 0.4308 0.2911
rio 0.4456 0.2688

Table 4.2: Average cross-validation error results of recipe recommendation for
desired satisfactions: ¢‘1 (5)— Ry
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Outline

© Recommendation Systems

@ Product Recommendation experiments
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State of the Art
Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Product Recommendation - Problem definition

Let have a social system with u € U users, and a catalog of items
(products) i € | belonging to several categories C, the ratings of
the products by (some of) the users are stored in a matrix R of size
| U|x|1]|. The recommendation problem consists in the
prediction of the rating R, ; that a user u would give to a product /
using the information provided by the social system and/or the
ratings given by other users.
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State of the Art

Recommendation Systems Recipe Generation experiments
Product Recommendation experiments

Product Recommendation - Database

Epinions Database is a bipartite graph based on Web of Trust and

Iltems’ Ratings.

24 Domains of products.

Selection of 5,000 users and items.
Removal of sparse values.
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State of the Art
Recommendation Systems ipe Generation experiments
Product Recommendation experiments

Product Recommendation - Feature construction |

Algorithm 5.1 Algorithm extracting the Web of Trust for each target user.
Given G(U.T), ratings R
For each target user u; in G, (U.T')
if (3j; €T then
[trustedUsers],, + u;
R +—R(u;)
endif
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State of the Art
Recommendation Systems ipe Generation e:
Product Recommendation experiments

Product Recommendation - Feature construction Il

Algorithm 5.2 Algorithm for extraction of target user similar users based on rat-
ings.
For each target user u; in G, ({{U/UI},R})
For each R, matrix rating for category ¢
wA¢T = SVD(R.)
@ =¢ +A /*Each row of & are eigenvectors from a user i
for each user /*Get distances
d{uj,uj) = ||¢',' - CD‘,'”
end
end
end
Select & most similiar users in D,
[SimilarU sers),, +— o similar users
Ri + R (uj) Tor uj in [SimilarUsers],,
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State of the Art
Recommendation Systems pe Generation experiments
Product Recommendation experiments

Product Recommendation - Results

MAE | RMSE | RAE RRSE
Linear Regression 0.37 0.79 32.13% | 56.87%
Multilayer Perceptron 0.59 0.94 | 51.67% | 67.42%
Support Vector Regression | 0.81 0.34 | 30.09% | 57.96%

KNN 036 | 079 |31.60% | 56.84%
Additive Regression 0.30 .96 | 25.91% | 68.69%
Random Tree 036 | 079 | 31.60% | 56.84%

Table 5.1: Results of features extracted from Web of Trust

MAE | RMSE | RAE RRSE
Linear Regression 0.74 1.49 | 44.47% | 79.11%
Multilayer Perceptron 0.97 1.4 | 58.15% | 87.23%
Support Vector Regression | 0.56 114 | 33.43% | 60.41%

KNN 1.25 1.39 | 85.10% | 84.32%
Additive Regression 056 1.14 | 3343% | 6041%
Random Tree 074 1.49 | 44.47% | 79.11%

Table 5.2: Results of features extracted from user distances
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@ State of the Art
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State of the Art

P Experimental work
Influence Maximization F

Influence Maximization - Solving the problem

@ Exhaustive Search
o #NP hard

@ Heuristic Search

l . .
o 1— < aproximation
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State of the Art

P Experimental work
Influence Maximization F

Influence Maximization - ICM Model
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Influence Maximization F

Influence Maximization - LTM Model
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State of the Art

P Experimental work
Influence Maximization P

Influence Maximization - Problem definition

@ Given a Web of Trust (WoT) associated to some social
system, specificed by weighted graph G = (U;E;T), where
there is a trust value associated with each edge, find the
minimal subset that maximizes the spread of influence.
(IM-seed nodes).

S% = minmaxo(S)
|S|ScV
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State of the Art

P Experimental work
Influence Maximization P

Influence Maximization - Databases

@ Epinions and synthetic databases

@ Subgraphs of different sizes

User Id | User Id | Trust Value
245 246 1
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Influence Maximization - Pipeline

RAW DATA
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State of the Art

P Experimental work
Influence Maximization P

Influence Maximization - Harmony Search

Algorithm 6.1 Harmony Search algorithm adapted to Influence Maximization

1. Given probabilistic social graph G = (V. E, W)
2. Initialize HS parameters and H My
3. whilet < NI

(a) fori=1...N /improvise new harmony x"
i ifr<HMCR
A X E (.. M5y
B. ifr < PAR then x; + x;+a;: & ~ U [—BW,BW]:
ii. otherwise x} & X;
(b) Evaluate harmony f (x')
() ff(x)=f (x”-'”s)
i. replace xHM5 jn HM, and sort HM.

4. Return best Harmony
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State of the Art
Experimental work

Influence Maximization

Influence Maximization - New Method

Algorithm 6.2 Proposed IM heuristic (IMH) solution algorithm

1. Given social graph G = (V,E. W), with adjacency matrix Ay = [a{’__l,]

(=]

. Sy = {\'|):V-,-\a.. .

3. Ry=V— {S;) Ue (S‘.;).Aﬁ}}

4. Ap= [a":’_‘ } st.a, =0if vé Ry Vv ¢ Ry: otherwise a” , = a’
5.1=0
6. iterate until R, = @

(@ v = argmax {01 ({v}.A)}

(b) S =8 U}

(© Ry =R —{{v}uei({v}A)}

(@ Agr = |ab!| st adt! =0ifvg R vy ¢ R otherwise @t = a.,

() rer+1

7. Return §;
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P Experimental work
Influence Maximization P

Influence Maximization - Results

density

Density  New method — Greedy

0.000011  0.018 sec. 5.587 sec.

0.00011 0.144 sec. 5.817 sec.
0.0011 0.031 sec. > 5 min.
0.011 0.050 sec. > 5 min.

Table 6.1: Comparison of speed using matrix of different density
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P Experimental work
Influence Maximization P

Influence Maximization - Results

] size

Sizes New method — Greedy
1000 0.065 sec 3.586 sec
2000 0.119 sec 35.938 sec
3000 0.182 sec > 5 min
4000 0.363 sec > 5 min
5000 0.446 sec > 5 min
6000 0.706 sec > 5 min
7000 1.702 sec > 5 min
8000 1.914 sec > 5 min
9000 2.012 sec > 5 min
10000 2.435 sec > 5 min

Table 6.2: Comparison of speed using matrix of different sizes
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Influence Maximization - Results
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Influence Maximization - Results

’ Synthetic database
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Influence Maximization - Results

’ Epinions database
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Thesis Goals

@ Study of basic social mechanisms such as the propagation of
Trust and influence, and the generation of innovations from
social interactions.

@ Study of the applications of Machine Learning algorithms in
social networks, for Trust prediction, recommendation
systems, and social computing.

© Study of Computational Intelligence algorithms for social
networks.

@ Creation of a computational substrate for experimentation,
and validation given by real and synthetic databases.
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Conclusions - Trust

@ Trust Prediction problem as Machine Learning problem is
rather straightforward compared with other works in the
literature (Graph Algebra).

@ Attempts to improve results applying a SMOTE approach do
not improve the overall accuracy, but provide improvements
on the minority class.
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Conclusions - Recommendation Systems

@ Application of regression ELM to build a breadmaker
recommender system which is an instance of the social
intelligence in the Internet of Things framework of the SandS
European Project.

@ Methods for Recommendation Systems in Social Networks
based on Colaborative Filtering.

© Better results are obtained with the Web of Trust provided by
user explicit statements.
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Conclusions - Influence Maximization

@ A new heuristic search method for Influence Maximization
(IMH).
@ It is guaranteed to terminate covering the entire graph.

© Proposed IMH method is always faster than Greedy algorithm.
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Future Work

@ Trust: imbalanced databases and feature definition.

@ Recommendation Systems: Real datasets. Sparse
computational methods.

@ Influence Maximization: Scalability.
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