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1 Introduction

The concept of an associative memory is a fairly intuitive one as it is based
on the observation that an associative memory seems to be one of the primary
functions of the brain. We easily associate the face of a friend with that of the
friend’s name, or a name with a telephone number. For this reason artificial
neural networks (ANNs) that are capabable of storing several types of patterns
and corresponding associations are referred to as associative memories. Such
memories retrieve stored associations when presented with corresponding input
patterns. An associative memory is said to be robust in the presence of noise if
presented with a corrupted version of a prototype input pattern it is still capable
of retrieving the correct association.

In classical pattern recognition, patterns are viewed as column vectors in
Euclidean space. Each component of a pattern vector x = (x1, x2, . . . , xn)

′ ∈ R
n

corresponds to one of the pattern’s features. The numerical value xi of a pattern
feature can represent a variety of objects or physical features such as signal
strength, curvature, a probability value, mean mass, and so on. One goal in the
theory of associative memories is for the memory to recall a stored pattern y ∈
R

m when presented a pattern x ∈ R
n, where the pattern association expresses
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some desired pattern correlation. More precisely, suppose X = {x1, . . . ,xK} ⊂
R

n and Y = {y1, . . . ,yK} ⊂ R
m are two sets of pattern vectors with desired

association given by the diagonal {(xξ,yξ) : ξ = 1, . . . ,K} of X × Y . The goal
is to store these pattern pairs in some memory M such that for ξ = 1, . . . ,K,
M recalls yξ when presented with the pattern xξ. If such a memory M exists,
then we shall express this association symbolically by xξ → M → yξ. Whenever
X = Y , then the memory M is called an auto-associative memory, otherwise it
is called a hetero-associative memory or simply an associative memory.

The matrix correlation memories resulting from the work of Steinbuch, Ko-
honen, Anderson, and Hopfield were the earliest artificial neural network (ANN)
examples of associative memories [1–10]. Matrix correlation memories based on
lattice computations were first introduced in the late 1990s [11–13]. These mem-
ories had the advantage of unlimited storage capacity and one step convergence.
However, they were susceptible to certain types of random noise. The concept of
dendritic computing was partially due to trying to eliminate the noise problem
encountered in the construction of artificial memories. The other reason was to
provide an artificial neural paradigm that is closer related to actual biological
neural computation [14].

Lattice based Neural Networks (LNNs) - although not yet recognized as main-
stream in machine learning - have become an integral part of artificial neural
network theory [15, 16]. One reason for this is their simplicity and fast learning
methods and another is due to their successful applicability in several disciplines
[17–22]. In this paper the focus is on a novel Dendritic Lattice based (hetero) As-
sociative Memory or, simply, DLAM. Recently two new DLAMs have appeared
in the literature [23] and [24]. The former being a generalization of the DLAMs
given in [25], while the latter had no predecessor within lattice theory. However,
the latter model was presented as an auto-associative memory. Here we show
that the model easily generalizes to a hetero-associative memory. Similar to ear-
lier lattice based associative memories, this new DLAM has unlimited storage
capacity in that it can memorize any finite number of association and provides
perfect recall for non-noisy input. However, as we shall demonstrate, its greatest
advantage over prior associative memories is that it can recall association even
when the input is an exemplar pattern that has been corrupted by more than
90% of random noise.

The remainder of this paper is partitioned into three sections. In Section 2 we
provide a brief overview of Dendritic Lattice based Neural Networks (DLNNs).
Rationale for the DLNN approach is not discussed as it can be found in [14]. Sec-
tion 3 introduces the new DLAM model and explains the computations occuring
in the different layers as well as the funtion of each layer. The robustness of the
DLAM in the presence of various types of noise is demonstrated in Section 4.
Conclusions and some pertinent observations are presented in the final section.



2 The Dendritic Lattice Based Model of ANNs

Roughly speaking, a lattice based neural network is an ANN in which the basic
neural computations are based on the operations of a lattice ordered group. By
a lattice ordered group we mean a set L with an associated algebraic structure
(L, ∨, ∧, +), where (L, ∨, ∧) is a lattice and (L, +) is a group with the property
that every group translation is isotone; that is, if x ≤ y, then a+x+b ≤ a+y+b

∀ a, b ∈ L. Given the set O = {∨, ∧, +} of lattice goup operations, then the
symbols ⊕ and ⊗ will mean that ⊕, ⊗ ∈ O but are not explicitly specified lattice
operations. Similarly, symbols of form

⊕

and
⊗

will denote lattice operations
derived from the operations ⊕ and ⊗, respectively. For example,

⊕n

i=1 ai =
a1 ⊕ a2 ⊕ · · · ⊕ an. Hence, specifying ⊕ = ∨, then

⊕n

i=1 ai =
∨n

i=1 ai = a1 ∨
a2 ∨ · · · ∨ an.

In the dendritic model of ANNs, a finite set of presynaptic neuronsN1, . . . , Nn

provides information through its axonal arborization to the dendritic trees of
some other finite set of postsynaptic neurons M1, . . . , Mm. The dendritic tree
of a postsynaptic neuron Mj is assumed to consist of a finite number of branches
dj1, . . . , djKj

which contain the synaptic sites upon which the axonal fibers of
the presynaptic neurons terminate. The strength of the synapse on the kth den-
dritic branch djk (k ∈ {1, . . . , K(j)}) which serves as a synaptic site for a ter-
minal axonal branch fiber of Ni is denoted by wℓ

ijk and is also called its synaptic
weight. The superscript ℓ is associated with the postsynaptic response that is
generated within and in close proximity of the synapse. Specifically, ℓ = 0 and
ℓ = 1 denote an inhibitory or excitatory postsynaptic response, respectively. It
is possible for several axonal fibers to synapse on the same or different synaptic
sites on a given branch djk, with the former case implying that wℓ

ijk = wℓ
hjk.

The total response (or output) of djk to the received input at its synaptic sites
is given by

τ
j
k (x) = pjk

⊕

i∈I(k)

⊗

ℓ∈L(i)

[(−1)1−ℓ
(

xi + wℓ
ijk

)

], (1)

where x = (x1, . . . , xn) ∈ Ln with Ln denoting the n-fold cartesian product of
L, xi ∈ L denotes the information propagated by Ni via its axon and axonal
branches, L(i) ⊆ {0, 1} corresponds to the postsynaptic response generated at
the synaptic region to the input received from Ni, and I(k) ⊆ {1, . . . , n} cor-
responds to the set of all presynaptic neurons with terminal axonal fibers that
synapse on the kth dendritic branch of Mj. The value pjk ∈ {−1, 1} marks the
final signal outflow from the kth branch as inhibitory if pjk = −1 and excitatory

if pjk = 1. The value τ
j
k (x) is passed to the cell body of Mj and the state of Mj

is a function of the combined values received from its dendritic structure and is
given by

τ j(x) = pj

Kj
⊗

k=1

τ
j
k(x), (2)

where Kj denotes the total number of dendritic branches of Mj and pj = ±1
denotes the response of the cell to the received input. Here again pj = −1 means
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Fig. 1. (a) Terminal branches of axonal fibers originating from the presynaptic neurons
make contact with synaptic sites on dendritic branches of Mj .
(b) Structure of a dendritic network

rejection (inhibition) and pj = 1 means acceptance (exitation) of the received
input. Figure 1(a) illustrates the neural pathways from the presynaptic neurons
to the postsynaptic neuron Mj. Figure 1(b) illustrates a dendritic network. The
prime example of a lattice ordered group is the set R of real numbers together
with the binary operations of the maximum (∨) and minimum (∧) of two num-
bers and the group operation of addition, denoted by (R, ∨, ∧, +). It is also the
lattice employed in this paper. Thus, for example, eqn.1 could assume the form

τ
j
k (x) = pjk

∨

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

xi + wℓ
ijk

)

, (3)

where x = (x1, . . . , xn) ∈ R
n, and xi ∈ R, while eqn.2 could be of form

τ j(x) = pj

Kj
∑

k=1

τ
j
k (x). (4)



3 Dendritic Lattice Associative Memories

The Dendritic Lattice based Associative Memory or DLAM described in this
section can store any desirable number of pattern associations and has perfect
recall when presented with an exemplary pattern. Furthermore, it is extremely
robust in the presence of noise and can be applied to both Boolean and real
number value patterns.

The proposed DLAM consists of four layers of neurons: an input layer, two
hidden layers, and an output layer. The number of neurons in each layer is
predetermined by the dimensionality of the pattern domains. Explicitely, if X =
{x1, . . . , xK} ⊂ R

n and Y = {y1, . . . , yK} ⊂ R
m, then the number of neurons

in the input layer is n, in the two hidden layers it is K, and the number in the
output layer is m. We denote the neurons in the input layer by N1, . . . , Nn, in
the first hidden layer by A1, . . . , AK , in the second hidden layer by B1, . . . , BK

and in the output layer by M1, . . . , Mm. We refer to the first and second hidden
layer as the A-layer and the B-layer, respectively. For a given input pattern
x = (x1, . . . , xn) ∈ R

n, the ith neuron Ni will assume as its value the ith
coordinate xi of x and will propagate this value through its axonal arborization
to the dentrites of the hidden layer neurons. The dendritic tree of each hidden
neuron Aj has n single branches dj1, . . . , djn, and each neuronNi has two axonal
fibers terminating on the synaptic sites located on the corresponding branch dji
of the hidden layer neuron Aj as depicted in Figure 1(b). Observe that in this
formulation the dendritic branch counter k = i, making the extra counter k

unecessary. The two synaptic weights associated with the two synaptic sites of
dji will be denoted by aℓij and defined by aℓij = −x

j
i for ℓ = 0, 1. The output

of each dendritic branch is denoted by τ
j
i (x). Here we use the formula given by

eqn. 3 in order to compute this value. Setting pjk = −1 and using the fact that
I(k) = I(i) = {i}, eqn. 3 reduces to

τ
j
i (x) = −

1
∧

ℓ=0

(−1)1−ℓ
(

xi + aℓij
)

= −[−(xi − x
j
i ) ∧ (xi − x

j
i )]

= −[−(xi − x
j
i ) ∧−(xj

i − xi)] = (xi − x
j
i ) ∨ (xj

i − xi). (5)

It follows from eqn. 5 that τ ji (x) = 0 ⇔ xi = x
j
i and τ

j
i (x) > 0 ⇔ xi 6= x

j
i . The

value τ
j
i (x) is passed to the cell body of Aj and its state is a function of the

combined values received from its dendritic structure. This state is computed
using eqn. 3 with pj = 1. Specifically, we have

τ
j
A(x) =

n
∑

i=1

τ
j
i (x) =

n
∑

i=1

(xi − x
j
i ) ∨ (xj

i − xi) =

n
∑

i=1

|xi − x
j
i |. (6)

It follows that each neuron Aj in the A-layer computes the L1-distance between

the input pattern x and the jth exemplar pattern xj . That is, τ jA(x) = d1(x,x
j).

The activation function for the A-layer neurons is derived from the identity



function, namely

fA(z) =

{

z if z ≤ T

∞ if z > T
, (7)

where T is a user defined threshold. We denote the output of Aj by s
j
A =

fA(τ
j
A(x)) and the collective output of the A-level neurons by sA.
The output sA of the A-layer serves as input to the neurons in the B-layer.

Here each neuron Bj has two dendrites dj1 and dj2. The dendrite dj1 has only
one synaptic site on which only an axonal fiber of Aj terminates. The synaptic
weight of this synapse is given by bℓjj = 0, with ℓ = 0. The second branch,
dj2, receives input from all the remaining neurons of the A-layer; i.e., from
{A1, . . . , AK} \ {Aj}. The synaptic weight of the synaptic site on dj2 for the
terminal axonal fiber of neuron Ar, with r 6= j, is given by bℓrj = 0, where ℓ = 1.

To compute the values τ
j
k (x) for the two dendrites of Bj , we use the general

formula

τ
j
k(x) = pjk

∧

i∈I(k)

∧

ℓ∈L(i)

(−1)1−ℓ
(

xi + wℓ
ijk

)

(8)

which is similar to eqn. 3. For k = 1 and i = j we have I(1) = {1} and
L(j) = {0}. Setting pj1 = 1 and employing eqn. 8 one obtains

τ
j
1 (sA) =

∧

i∈I(1)

∧

ℓ∈L(j)

(−1)1−ℓ
(

s
j
A + bℓjj

)

= −s
j
A. (9)

Similarly, for dj2 we have k = 2, i = r, I(2) = {1, . . . , k} \ {j}, and L(r) = {1}.
Again setting pj2 = 1, one obtains

τ
j
2 (sA) =

∧

r∈I(2)

∧

ℓ∈L(r)

(−1)1−ℓ
(

srA + bℓjr
)

=
∧

r 6=j

srA. (10)

The values τ j1 (s
j
A) and τ

j
2 (sA) flow into the cell body of Bj and its state is a

function of the combined values received from its dendrites:

τ
j
B(sA) =

2
∑

k=1

τ
j
k (sA) = τ

j
1 (sA) + τ

j
2 (sA) =

∧

r 6=j

srA − s
j
A. (11)

We consider the two possibilities of
∧

r 6=j s
r
A > s

j
A and

∧

r 6=j s
r
A ≤ s

j
A. The first

possible case implies that s
j
A 6= ∞ and, hence, sjA = d1(x,x

j). That is, the
pattern vector x is closer to the exemplar pattern xj than any of the other
exemplar pattern and within the allowable threshold T . The second possibility
implies that either there is another exemplar xr which is closer (or just as close)
to x as xj , or that xj surpassed the threshold T . In the first case we want the
neuron Bj to send that information to the output neurons while in the second
case we do not want Bj to fire. In order to achieve this we define the activation
function to be the lattice-based hardlimiter

fB(z) =

{

0 if z > 0
−∞ if z ≤ 0

. (12)



Thus, the output of Bj is given by s
j
B = fB[τ

j
B(sA)] and serves as the input to

the output layer M . Each output neuron Mi, i = 1, . . . , m, has only a single
dendrite di1 receiving excitatory input from all K neurons of the B-layer. The
weight associated with the synaptic site on di1 of the terminal axonal fiber of
Bj is defined as w1

ji = y
j
i . Here j = 1, . . . , K and i = 1, . . . , m. Using eqn. 3 to

compute the output pattern, we note that since each Mi has only one dendrite
di1 we have k = 1 (for each i) and I(1) = {1, . . . , ,K}. Also, since we are
dealing with excitatory synaptic responses only, we have that for each j ∈ I(1),
L(j) = {1}. By setting pi1 = 1, eqn. 3 now reduces to

τ i1(sB) =
K
∨

j=1

(sjB + w1
ji) =

K
∨

j=1

(sjB + y
j
i ). (13)

Observe that τ i(sB) = τ i1(sB) The activation function for each neuron Mi is
simply the identity function so that the output yi of Mi is given by yi = τ i(sB).
The total output of the the set M1, . . . , Mm is the vector y = (y1, . . . , ym). It
remains an easy excercise to show that for an uncorrupted input xj the output
at the M -level will be yj .

4 Experiments with Noisy and Corrupted Inputs

In this section we present results of some computational experiments that demon-
strate the performance of the proposed DLAM in recalling stored associations
when presented with corrupted versions of exemplar patterns. We use images
to form pattern vectors only to provide a visual interpretation of the recall. In
general. Associative memories are used for pattern recall, not image recall. The
transformation of images into vectors is accomplished via the usual column-scan
method. We created a database of image patterns from image obtained from
various websites.

Experiment 1. In this experiment, each of the sets X and Y consists of six
Boolean exemplar patterns. The set X is derived from the set of six 700 × 350
Boolean images shown in the top row of Figure 2, while the set of associated
output patterns is derived from the six 380× 500 Boolean images shown in the
botton row of Figure 2. Thus, X = {x1, ..., x6} , with xj ∈ {0, 1}

245000
, and

Y = {y1, ..., y6} with yj ∈ {0, 1}190000.

Every pattern image was corrupted adding “salt and pepper” noise. Each
noisy pixel of corrupted image is rounded to either 0 or 1 to preserve the Boolean
character of the images.

The range of the noise levels varied from 1% to 99% and was tested on all
the images. Instances of corrupted input images are shown in Figure 3. The
corresponding output images recalled by the DLAM are shown in the bottom
row. The DLAM shows perfect recall robustness to salt and pepper noise.



Fig. 2. Set of Boolean images of six predators in the first row and corresponding six
preys in the second row.

Fig. 3. First row: Boolean exemplar images corrupted with increasing levels of “salt
and pepper” noise of 50%, 60%, 70%, 80%, 90%, and 94% (left to right).
Bottom row: Perfect recall associations derived from the noisy input patterns in the
top row.

Experiment 2 In this example we use a database of grayscale images in
which the value of each pixel has an integer intensity value in a range from
0 (black) to 255 (white). Similar to Example 1, we use predator-prey associ-
ation images as shown in Figure 4. Both predator and prey images are of size
265×265. In mathematical terminology we have X = {x1, ..., xK} ⊂ R

70225 and
Y = {y1, ..., yK} ⊂ R

70225, K = 5. In this experiment we use different types
of pattern corruption and noise. Specifically, we simulate noise pattern acquisi-
tion by increasing and decreasing image contrast, approximating linear camera
motion, applying circular averaging filter, employing the morphological trans-
forms of dilation and erosion with different structuring elements, and by using
Gaussian and uniform noise. Figure 5 shows some of the tested image corrup-
tion changes. Different types of noise corruption have been applied to different
images. The first column represents a motion blur, the 2nd Gaussian noise, the
3rd the application of a circular averaging filter, the 4th a morphological erosion
with a line as structuring elements and the 5th a morphological dilation with
elipsoid as structuring elements.

Fig. 4. Set of grayscale images: 5 Predators in the first row and corresponding 5 Preys
in the second row.



Fig. 5. The exemplar input image patterns are shown in the 1st row. The 2nd through
the 4th column below a given predator show the increase in the noise level or image
corruption of the predator as discussed in the text. The bottom row illustrates the
DLAMs recall performance when presented with a noisy predator image above the
prey.

In the above two experiments, the threshold T for the activation function
given in eqn. 7 was set to T = ∞; i.e, fA was simply the identity function. With
this threshold, the DLAM performance is very impressive in that associations can
be recalled even at 99% random noise levels of the input data. However, images
with such high and even lower noise levels of corruption cannot be identified by
a human observer when not first shown the original pattern images. This poses
the problem of misidentifying intruders. For example, suppose we let x ∈ R

70225

be obtained from a 265× 265 image of a horse and present the DLAM with x as
input. If T = ∞, then the DLAM will find the closest L1-distance to one of the
stored images and will associate the horse with one of the predators and correlate
it with the predator’s prey. To avoid intruders, a threshold T < ∞ can usually
be determined that avoids misclassification of intruders. In image data (such as
shown here) with random noise levels in excess of 60%, most images cannot be
recognized by a human observer – the best visual pattern recognizer – when not
first shown the corresponding non-noisy exemplar. Thus, if x̄j represent exem-
plar xj corrupted by about 60% of random noise, then setting Tj = d1

(

xj , x̄j
)

and T = 1
k

k
∑

j=1

d1
(

xj , x̄j
)

will, generally, present intruders be recognized as a

legitimate exemplars. The next example supports this assumption.

Experiment 3 The dataset is the same as in Example 2. The recall of up to
99% of “salt and pepper” noise is perfect just as in Example 1. We consider the



response of the DLAM to a new image pattern x which is not an element of
X , namely the horse image of size 265× 265 pixels shown in the last column of
Figure 6.

If we present the image pattern x with the predator image that is closest (in
the L1-distance) to the horse and will, therefore, recall the prey associated with
this predator. In this specific case the nearest predator is the leopard as can be
ascertained from Table 1. Thus, the deer will be associated with the horse when
the horse is used as input to the DLAM.

Note that a human observer will have extreme difficulty in identifying any of
the images shown in Figure 6 if not shown the true exemplars first. Recognition
at a noise level of 70% becomes pure guess work. Computing Tj = d1

(

xj , x̄j
)

for

each j and each noise level as well as d1
(

xj , x) , we can see from Table 1 that

d1
(

x1, x) = 5667, where x1 = leopard and x = horse, and T = 1
5

5
∑

j=1

T j = 5637

when x̄j represents as 63% corruption of xj . Thus, T eliminates x as an intruder.
Hence, using T = 5376 (x̄j representing 60% corruption of xj) would be an even
better choice for preventing other intruders.

Noise 0% 50% 60% 63% 65% 70% 80% 90% 100% Horse

Leopard 0 4470 5374 5634 5813 6297 7158 8066 8932 5667

Eagle 0 4492 5348 5626 5844 6252 7154 8080 8947 6293

Wolf 0 4484 5396 5663 5832 6265 7177 8051 8965 6367

Dolphin 0 4452 5385 5640 5816 6281 7162 8059 8952 6713

Cobra 0 4487 5377 5621 5801 6292 7147 8052 8946 6189

Average 0 4477 5376 5637 5821 6277 7160 8062 8948 6246

Table 1. The distance (×103) between original predator image and the corrupted
image with 50%, 60%, 63%, 65%, 70%, 80%, 90% and 100% of “salt and pepper”
noise. The last column has the distance to the “horse” image shown in Figure 6.

5 Conclusions

We present a new hetero-associative lattice memory based on dendritic comput-
ing. We report experimental results showing that this memory exhibits extreme
robustness in the presence of various types of noise. It is our opinion that this
DLAM is superior to existing hetero-associative memories. Further work will be
addressed to perform exhaustive comparison tests with other associative memory
architectures in order to rigorously verify our opinions.
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