

A Novel Lattice Associative Memory Based on Dendritic Computing Gerhard Ritter¹, Darya Chyzhyk²,

Genard Riller⁺, Darya Chyznyk², Gonzalo Urcid³, Manuel Graña²

1 - CISE Department, University of Florida, USA

- 2 Computational Intelligence Group, University of Basque Country, San Sebastián, Spain <u>www.ehu.es/ccwintco</u>
- 3 Optics Department, INAOE, Mexico

HAIS Salamanca, Spain March 28th-30th, 2012.

Content

- Introduction
- The Dendritic Lattice Based Model of ANNs
- Dendritic Lattice Associative Memories
- Experiments with Noisy and Corrupted Inputs
- Conclusions

Introduction

- Associative memory seems to be one of the primary functions of the brain
- In classical **pattern recognition**, patterns are viewed as column vectors in Euclidean space.

$$\mathbf{x} = (x_1 \dots x_n)' \in \mathbb{R}^n$$

One **goal** in the theory of associative memories is for the memory to **recall** a stored pattern $y \in R^m$ when presented a pattern $x \in R^n$

Introduction

Suppose $X = \{x^1, ..., x^K\} \subset R^n$ $Y = \{y^1, ..., y^K\} \subset R^m$

are **two sets** of pattern vectors with desired **association** given by the diagonal $\{(x^{\xi}, y^{\xi}) : \xi = 1, ..., K\}$

The **goal** is to **store** these pattern pairs (x^{ξ} , y^{ξ}) in some memory *M* such that *M* recalls y^{ξ} when presented with the pattern x^{ξ} .

If **X=Y**, then the memory **M** is called an **auto-associative** memory, otherwise it is called a **hetero-associative** memory or simply an associative memory.

The Dendritic Lattice Based Model of ANNs

A **lattice based neural network** is an ANN in which the basic neural **computations** are based on the **operations** of a **lattice ordered group**.

Lattice ordered group: a set *L* with an associated algebraic structure

 $(L, \lor, \land, +)$

Where (L,v,Λ) is a lattice and (L,+) is a group with the property that every group translation is isotone:

```
if x \le y, then a + x + b \le a + y + b, \forall a, b \in L
```

The neural pathways from the presynaptic neurons to the postsynaptic neuron

The Dendritic Lattice Based Model of ANNs

The total **response** (or output) of **dendritic branch** to the received input at its synaptic sites is given by

$$\tau_k^{j}(\mathbf{x}) = p_{jk} \bigvee_{i \in I(k)} \bigwedge_{l \in L(i)} (-1)^{1-l} (x_i + \omega_{ijk}^{l})$$

The state of postsynaptic neurons M_i

$$\boldsymbol{\tau}^{j}(\mathbf{x}) = p_{j} \sum_{k=1}^{K_{j}} \boldsymbol{\tau}_{k}^{j}(\mathbf{x})$$

dendritic tree: K-dendritic branches

M_i - Postsynaptic neurons

A dendritic network

1. N_i - an input layer

2. A_i - the first hidden layer

3. B_i - the second hidden layer

4. M_i - an output layer

2. A_i - the first hidden layer

The synaptic weights:
$$a_{ij}^{l} = -x_{i}$$

 $\tau_{i}^{j}(\mathbf{x}) = -\bigwedge_{l=0}^{1} (-1)^{1-l} (x_{i} + a_{ij}^{l}) =$
 $= (x_{i} - x_{i}^{j}) \vee (x_{i}^{j} - x_{i})$

The state of neuron
$$A_j$$
:

$$\tau_A^j(\mathbf{x}) = \sum_{i=1}^n (x_i - x_i^j) \vee (x_i^j - x_i) =$$

$$= \sum_{i=1}^n |x_i - x_i^j| \qquad \mathbf{L_1-distance}$$

The identity function for A-layer neurons

$$f_A(z) = \begin{cases} z \text{ if } z \leq T \\ \infty \text{ if } z > T \end{cases}$$

The output $s_A^j = f_A(\tau_A^j(\mathbf{x}))$

3.
$$B_j$$
 - the second hidden layer
The synaptic weights: $b_{jj}^l = 0$
 $b_{i\in I(k)}^j = \bigwedge_{l\in L(i)} (-1)^{1-l} (s_A^j + b_{jj}^l) = -s_A^j$
 $b_{rj}^l = 0$
 $b_{rj}^l = 0$

The state of neuron B_i :

$$\tau_B^j(\mathbf{x}) = \sum_{k=1}^2 \tau_k^{j}(s_A) = \bigwedge_{r \neq j} s_A^r - s_A^j$$

The identity function for B-layer neurons

$$f_B(z) = \begin{cases} 0 \text{ if } z > 0 \\ -\infty \text{ if } z \le 0 \end{cases}$$

The output $s_B^j = f_B(\tau_B^j(\mathbf{x}))$

4. M_i - an output layer

The synaptic weights: $w_{ji}^{l} = y_{i}^{j}$ The state of neuron M_{ji} :

$$\tau_1^{j}(s_B) = \bigvee_{i=1}^{K} (s_B^{j} + w_{rj}^{1}) = \bigvee_{i=1}^{K} (s_B^{j} + y_i^{j})$$

The identity function for A-layer neurons

 $f_M(z) = z$

The output $y_i = c_i$

$$y_i = \tau^i(s_B)$$

Experiments with Noisy and Corrupted Inputs

• Experiment 1

In this experiment, each of the sets X and Y consists of six **Boolean** exemplar patterns. The set X is derived from the set of six **700 × 350** with the set of **associated** output patterns is derived from the six **380 × 500**

Every pattern image was corrupted adding "salt and pepper" **noise**. Each noisy pixel of corrupted image is rounded to either 0 or 1 to preserve the **Boolean** character of the images. The range of the noise levels varied from 1% to 99% and was tested on all the images. **The DLAM shows perfect recall.**

In this example we use a database of **grayscale** images. Both **predator** and **prey** images are of size **265×265**.

 We simulate noise pattern acquisition and tested image corruption changes: camera motion, Gaussian noise, the application of a circular averaging filter, a morphological erosion with a line as structuring elements and a morphological dilation with elipsoid as structuring elements.

The DLAMs perfect recall

Experiments with Noisy and Corrupted Inputs

In the Experiment 1 and 2, the threshold **T** for the activation function given by

$$f_A(z) = \begin{cases} z \text{ if } z \le T \\ \infty \text{ if } z > T \end{cases}$$

was set to $T = \infty$

With this threshold, the **DLAM** performance is very **impressive** in that associations can be recalled even at **99% random noise** levels of the input data.

However, images with such high and even lower noise levels of corruption **can not be identified by a human** observer when not first shown the original pattern images.

To **avoid misclassification** of intruders, a threshold *T* is determined as $T < \infty$

Noise	0%	50%	60%	63%	65%	70%	80%	90%	100%	Horse
Leopard	0	4470	5374	5634	5813	6297	7158	8066	8932	5667
Eagle	0	4492	5348	5626	5844	6252	7154	8080	8947	6293
Wolf	0	4484	5396	5663	5832	6265	7177	8051	8965	6367
Dolphin	0	4452	5385	5640	5816	6281	7162	8059	8952	6713
Cobra	0	4487	5277	5621	5801	6292	7147	8052	8946	6189
Avarage	0	4477	5276	5637	5821	6277	7160	8062	8948	6246

The **nearest** predator is the **leopard**.

Thus, the **deer** will be associated with the horse when the **horse** is used as **input** to the DLAM.

Computing $T_j = d_1(x^j, \overline{x}^j)$ for each j and each noise level as well as $d_1(x^1, x) = 5667$, where $x^1 = leopard$ and x = horse, and $T = \frac{1}{5} \sum_{j=1}^{5} T^j = 5637$ when \overline{x}^j represents as 63% corruption of x^j . Thus, *T* eliminates *x* as an intruder.

Conclusions

- We present a new hetero-associative lattice memory based on dendritic computing.
- We report experimental results showing that this memory exhibits extreme robustness in the presence of various types of noise.

A Novel Lattice Associative Memory Based on Dendritic Computing Gerhard Ritter¹, Darya Chyzhyk²,

Gernard Riller⁺, Darya Chyznyk², Gonzalo Urcid³, Manuel Graña²

1 - CISE Department, University of Florida, USA

- 2 Computational Intelligence Group, University of Basque Country, San Sebastián, Spain <u>www.ehu.es/ccwintco</u>
- 3 Optics Department, INAOE, Mexico

HAIS Salamanca, Spain March 28th-30th, 2012.