A Novel Lattice Associative Memory Based on Dendritic Computing

Gerhard Ritter¹, Darya Chyzhyk², Gonzalo Urcid ${ }^{3}$, Manuel Graña²

1 - CISE Department, University of Florida, USA
2 - Computational Intelligence Group, University of Basque Country, San Sebastián, Spain www.ehu.es/ccwintco

3 - Optics Department, INAOE, Mexico
HAIS
Salamanca, Spain
March 28th-30th, 2012.

Content

- Introduction
- The Dendritic Lattice Based Model of ANNs
- Dendritic Lattice Associative Memories
- Experiments with Noisy and Corrupted Inputs
- Conclusions

Introduction

- Associative memory seems to be one of the primary functions of the brain
- In classical pattern recognition, patterns are viewed as column vectors in Euclidean space.

$$
\mathbf{x}=\left(x_{1} \ldots x_{n}\right)^{\prime} \in R^{n}
$$

One goal in the theory of associative memories is for the memory to recall a stored pattern $\quad \mathbf{y} \in R^{m} \quad$ when presented a pattern $\mathbf{x} \in R^{n}$

Introduction

Suppose

$$
X=\left\{x^{1}, \ldots, x^{K}\right\} \subset R^{n} \quad Y=\left\{y^{1}, \ldots, y^{K}\right\} \subset R^{m}
$$

are two sets of pattern vectors with desired association given by the diagonal

$$
\left\{\left(x^{\xi}, y^{\xi}\right): \xi=1, \ldots, K\right\}
$$

The goal is to store these pattern pairs ($\boldsymbol{x}^{\xi}, y^{\xi}$) in some memory \boldsymbol{M} such that \boldsymbol{M} recalls $\boldsymbol{y}^{\boldsymbol{\xi}}$ when presented with the pattern \boldsymbol{x}^{ξ}.

If $X=Y$, then the memory \boldsymbol{M} is called an auto-associative memory, otherwise it is called a hetero-associative memory or simply an associative memory.

The Dendritic Lattice Based Model of ANNs

A lattice based neural network is an ANN in which the basic neural computations are based on the operations of a lattice ordered group.

Lattice ordered group: a set L with an associated algebraic structure

$$
(L, \vee, \wedge,+)
$$

Where (L, \vee, \wedge) is a lattice and $(L,+)$ is a group with the property that every group translation is isotone:
if $x \leq y$, then $a+x+b \leq a+y+b, \forall a, b \in L$

The neural pathways from the presynaptic neurons to the postsynaptic neuron

N_{i} - presynaptic neurons
dendritic tree: K-dendritic branches
synaptic weight: inhibitory or excitatory
M_{j} - Postsynaptic neurons

The Dendritic Lattice Based Model of ANNs

The total response (or output) of dendritic branch to the received input at its synaptic sites is given by

$$
\tau_{k}^{j}(\mathbf{x})=p_{j k} \bigvee_{i \in I(k)} \bigwedge_{l \in L(i)}(-1)^{1-l}\left(x_{i}+\omega_{i j k}^{l}\right)
$$

The state of postsynaptic neurons M_{j}

$$
\tau^{j}(\mathbf{x})=p_{j} \sum_{k=1}^{K_{j}} \tau_{k}^{j}(\mathbf{x})
$$

dendritic tree: K-dendritic branches
M_{j} - Postsynaptic neurons

A dendritic network

1. N_{i} - an input layer
2. A_{j} - the first hidden layer
3. B_{j} - the second hidden layer
4. M_{i} - an output layer

5. A_{j} - the first hidden layer

The synaptic weights: $\quad a_{i j}^{l}=-x_{i}$

$$
\begin{aligned}
& \boldsymbol{\tau}_{i}^{j}(\mathbf{x})=-\bigwedge_{l=0}^{1}(-1)^{1-l}\left(x_{i}+a_{i j}^{l}\right)= \\
& =\left(x_{i}-x_{i}^{j}\right) \vee\left(x_{i}^{j}-x_{i}\right)
\end{aligned}
$$

The state of neuron A_{j} :

$$
\begin{aligned}
& \tau_{A}^{j}(\mathbf{x})=\sum_{i=1}^{n}\left(x_{i}-x_{i}^{j}\right) \vee\left(x_{i}^{j}-x_{i}\right)= \\
& =\sum_{i=1}^{n}\left|x_{i}-x_{i}^{j}\right| \quad \quad \mathbf{L}_{1} \text {-distance }
\end{aligned}
$$

The identity function for A-layer neurons

$$
f_{A}(z)=\left\{\begin{array}{l}
z \text { if } z \leq T \\
\infty \text { if } z>T
\end{array}\right.
$$

The output $s_{A}^{j}=f_{A}\left(\tau_{A}^{j}(\mathbf{x})\right)$

4. M_{i} - an output layer

The synaptic weights: $\quad w_{j i}^{l}=y_{i}^{j}$
The state of neuron M_{j} :

$$
\tau_{1}^{j}\left(s_{B}\right)=\bigvee_{i=1}^{K}\left(s_{B}^{j}+w_{r j}^{1}\right)=\bigvee_{i=1}^{K}\left(s_{B}^{j}+y_{i}^{j}\right)
$$

The identity function for A-layer neurons

$$
f_{M}(z)=z
$$

The output $\quad y_{i}=\tau^{i}\left(s_{B}\right)$

Experiments with Noisy and Corrupted Inputs

- Experiment 1

In this experiment, each of the sets X and Y consists of six Boolean exemplar patterns. The set X is derived from the set of six 700×350 with the set of associated output patterns is derived from the six $\mathbf{3 8 0} \times \mathbf{5 0 0}$

Experiment 1

Every pattern image was corrupted adding "salt and pepper" noise. Each noisy pixel of corrupted image is rounded to either 0 or 1 to preserve the Boolean character of the images.
The range of the noise levels varied from 1% to 99% and was tested on all the images. The DLAM shows perfect recall.

Experiment 2

In this example we use a database of grayscale images. Both predator and prey images are of size $\mathbf{2 6 5 \times 2 6 5}$.

Experiment 2

- We simulate noise pattern acquisition and tested image corruption changes: camera motion, Gaussian noise, the application of a circular averaging filter, a morphological erosion with a line as structuring elements and a morphological dilation with elipsoid as structuring elements.

Experiments with Noisy and Corrupted Inputs

In the Experiment 1 and 2, the threshold \mathbf{T} for the activation function given by

$$
f_{A}(z)=\left\{\begin{array}{l}
z \text { if } z \leq T \\
\infty \text { if } z>T
\end{array}\right.
$$

was set to $T=\infty$
With this threshold, the DLAM performance is very impressive in that associations can be recalled even at 99\% random noise levels of the input data. However, images with such high and even lower noise levels of corruption can not be identified by a human observer when not first shown the original pattern images.

Experiment 3

To avoid misclassification of intruders, a threshold \boldsymbol{T} is determined as $T<\infty$

Experiment 3

Noise	0%	50%	60%	63%	65%	70%	80%	90%	100%	Horse
Leopard	0	4470	5374	5634	5813	6297	7158	8066	8932	5667
Eagle	0	4492	5348	5626	5844	6252	7154	8080	8947	6293
Wolf	0	4484	5396	5663	5832	6265	7177	8051	8965	6367
Dolphin	0	4452	5385	5640	5816	6281	7162	8059	8952	6713
Cobra	0	4487	5277	5621	5801	6292	7147	8052	8946	6189
Avarage	0	4477	5276	5637	5821	6277	7160	8062	8948	6246

The nearest predator is the leopard.
Thus, the deer will be associated with the horse when the horse is used as input to the DLAM.

Experiment 3

Computing $T_{j}=d_{1}\left(x^{j}, \bar{x}^{j}\right)$ for each j and each noise level as well as $d_{1}\left(x^{1}, x\right)=5667$, where $x^{1}=$ leopard and $x=$ horse, and $T=\frac{1}{5} \sum_{j=1}^{5} T^{j}=5637$ when $\bar{x}{ }^{j}$ represents as 63% corruption of x^{j}
Thus, T eliminates x as an intruder.

Conclusions

- We present a new hetero-associative lattice memory based on dendritic computing.
- We report experimental results showing that this memory exhibits extreme robustness in the presence of various types of noise.

A Novel Lattice Associative Memory Based on Dendritic Computing

Gerhard Ritter¹, Darya Chyzhyk², Gonzalo Urcid ${ }^{3}$, Manuel Graña²

1 - CISE Department, University of Florida, USA
2 - Computational Intelligence Group, University of Basque Country, San Sebastián, Spain www.ehu.es/ccwintco

3 - Optics Department, INAOE, Mexico
HAIS
Salamanca, Spain
March 28th-30th, 2012.

