
2nd Reading

March 5, 2015 15:14 1550007

International Journal of Neural Systems, Vol. 25, No. 3 (2015) 1550007 (23 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129065715500070

Discrimination of Schizophrenia Auditory Hallucinators
by Machine Learning of Resting-State Functional MRI

Darya Chyzhyk∗ and Manuel Graña
Computational Intelligence Group

Universidad del Pais Vasco (UPV/EHU)
San Sebastian 20018, Spain

∗darya.chyzhyk@ehu.es
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Auditory hallucinations (AH) are a symptom that is most often associated with schizophrenia, but
patients with other neuropsychiatric conditions, and even a small percentage of healthy individuals, may
also experience AH. Elucidating the neural mechanisms underlying AH in schizophrenia may offer insight
into the pathophysiology associated with AH more broadly across multiple neuropsychiatric disease con-
ditions. In this paper, we address the problem of classifying schizophrenia patients with and without a
history of AH, and healthy control (HC) subjects. To this end, we performed feature extraction from
resting state functional magnetic resonance imaging (rsfMRI) data and applied machine learning clas-
sifiers, testing two kinds of neuroimaging features: (a) functional connectivity (FC) measures computed
by lattice auto-associative memories (LAAM), and (b) local activity (LA) measures, including regional
homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF). We show that it is
possible to perform classification within each pair of subject groups with high accuracy. Discrimination
between patients with and without lifetime AH was highest, while discrimination between schizophrenia
patients and HC participants was worst, suggesting that classification according to the symptom dimen-
sion of AH may be more valid than discrimination on the basis of traditional diagnostic categories. FC
measures seeded in right Heschl’s gyrus (RHG) consistently showed stronger discriminative power than
those seeded in left Heschl’s gyrus (LHG), a finding that appears to support AH models focusing on
right hemisphere abnormalities. The cortical brain localizations derived from the features with strong
classification performance are consistent with proposed AH models, and include left inferior frontal gyrus
(IFG), parahippocampal gyri, the cingulate cortex, as well as several temporal and prefrontal cortical
brain regions. Overall, the observed findings suggest that computational intelligence approaches can
provide robust tools for uncovering subtleties in complex neuroimaging data, and have the potential
to advance the search for more neuroscience-based criteria for classifying mental illness in psychiatry
research.

Keywords: Resting state fMRI; Schizophrenia; machine learning; feature selection; lattice computing;
functional connectivity; lattice auto-associative memories.

1. Introduction

Auditory hallucinations (AH) are auditory percep-
tions in the absence of external acoustical stimuli.3,59

They are a common symptom in schizophrenia, but

they can be present in other psychiatric disorders, in
neurological conditions, such as epilepsy,33 in states
of drug intoxication or withdrawal, and even in 10–
15% of healthy subjects.85,89 The pathophysiology
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underlying AH may be shared to some degree across
multiple disease conditions. Thus, elucidating the
neural mechanisms underlying AH in schizophrenia
may offer insight into the mechanisms associated
with AH more broadly.

Several models of AH pathogenesis have been
proposed,3,36,40,59,63,65,71,83,95 but the exact patho-
physiology remains unclear. According to inner
speech theories, AH occur when inner speech is mis-
attributed as originating outside the self. Source
monitoring accounts focus on preconscious top-down
cognitive processes such as the influence of cues,
personal beliefs, and expectations in the failure to
recognize “self” attributes of inner speech.17,41,91

Feed forward models, which provide a more bottom-
up explanatory framework, propose that AH result
from a breakdown in corollary discharge, a system
that signals via an “efference copy” that a partic-
ular motor output is about to be produced.20,21

In the case of inner speech, discharges from motor
speech production areas fail to inhibit speech percep-
tion areas, and the self-produced speech is thus per-
ceived as coming from an external source.23 Studies
investigating such feed forward models tend to focus
on structural and functional disconnection between
the frontal and temporo-parietal areas.3,59,81,84 Mod-
els based in signal detection theory5 suggest that
AH result from greater perceptual bias to detect
auditory signals, especially signals consisting of per-
sonally salient words.18 A memory-based model
proposes that AH are unintentionally activated audi-
tory representations from memory which have been
dissociated from their original context.94 A more
neuroanatomically oriented model proposes that AH
arise from heightened bottom-up activity in the left
superior temporal gyrus (STG) priming the brain for
“over-perceptualization”, combined with a failure of
top-down control from the anterior cingulate, pre-
frontal, premotor, and cerebellar cortices leading to
a breakdown in monitoring.3 A similar model sug-
gests it is the failure of prefrontal executive functions
to inhibit activity in the STG (the perceptual origin
of AH) and parietal cortex (the purported center of
attention to the voice), due to frontotemporopari-
etal disconnection, that leads to AH.36 Still another
hypothesis, focusing on network connectivity,64 sug-
gests that abnormal interaction between the default
mode network and the auditory cortex at rest is
the fundamental mechanism leading to AH. Most of

these models are not mutually exclusive, and there
are ongoing efforts to integrate such models into a
more unified view.95

Studies on the neural substrates associated with
AH pathophysiology, as proposed in the above and
other AH models, have utilized a wide range of neu-
roimaging techniques.3 These include volumetric and
morphometric magnetic resonance imaging (MRI)
studies,48,71 diffusion tensor imaging (DTI) to assess
white matter integrity,14 functional activation stud-
ies using positron emission tomography (PET) or
functional MRI (fMRI),86 and functional connectiv-
ity (FC) studies16,40,51,52 using resting-state fMRI
(rsfMRI).24,76 rsfMRI enables the study of correla-
tions between low frequency components of voxel
time series,7 which are proposed to reflect intrin-
sic functional correlations between brain regions.7,101

rsfMRI data are aquired in awake subjects in a pas-
sive mind state; because rsfMRI does not impose
on the cognitive abilities of the subjects, it can be
performed with a wide variety of subjects and cog-
nitive conditions. rsfMRI has been used to study
brain development,19 depression,31,100 Alzheimer’s
Disease,55 and schizophrenia.61,70,96,105,106

rsfMRI studies of schizophrenia patients with
AH have used varying methods and asked dif-
ferent questions about AH-related connectiv-
ity.11,25,34,54,68,80,81,84,92,97 A recent study by mem-
bers of our group81 investigated differences between
schizophrenia patients with and without a history of
AH in the resting state network correlating with vox-
els in left Heschl’s gyrus (LHG) (Montreal Neurolog-
ical Institute (MNI) coordinates −42, −26, 10), the
location of the primary auditory cortex in humans.13

The LHG seed was selected because it has been
identified in anatomical62,71 and functional stud-
ies16 as important in AH pathogenesis. We found
that LHG FC to classical Broca’s territory in infe-
rior frontal gyrus (IFG), dorsal anterior cingulate
cortex (dACC), and other frontotemporal regions is
elevated in AH and covaries with AH severity. In
contrast to the results from the symptom covariate
analysis, the findings from the group-wise compar-
isons were less robust.

Machine learning,2,82 which is a branch of arti-
ficial intelligence, provides new ways to analyze
neuroimaging data50,102 and may offer advantages
over traditional statistical inference approaches (for
details, see Sec. 3.1 describing the rationale for the
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approach). In machine learning models, dependent
variables can be predicted on the basis of fea-
tures extracted from the data. The feature extrac-
tion process, involving voxel saliency measures,
can provide imaging biomarkers for the phenom-
ena under study when the discriminant values can
be mapped onto anatomical locations. Classification
performance, as measured by accuracy and other
indices, then enables assessment of a model’s predic-
tive power. A variety of computational intelligence
approaches have previously been applied to rsfMRI
data analysis. These include artificial neural net-
works,57 multivariate pattern analysis (MVPA),19,72

and a spiking neural network.98

In this paper, we apply a novel lattice computing-
based machine learning approach27,29,30 to mea-
sure the accuracy with which rsfMRI data from
schizophrenia patients with a history of AH (SZAH)
can be discriminated from that of schizophrenia
patients without a history of AH (SZNAH) and
healthy controls (HC). In mathematics, a lattice is
a partially ordered set in which every set of two ele-
ments has a join (or least upper bound) and a meet
(or greatest lower bound).6 Inspired by mathematical
morphology, lattice computing29,44,45 provides a non-
linear approach to computational problem solving. In
general terms, algorithms are built on lattice alge-
bra [(Rn,∧,∨, +) where ∧ and ∨ are the minimum
and maximum binary operators], instead of conven-
tional linear algebra (Rn, +,×).78 Lattice computing
provides numerically robust solutions, avoiding the
problem of inverse computations which are inher-
ent in linear approaches. Lattice computing is also
faster than linear approaches because multiplica-
tions are replaced by additions in the construction of
algorithms.

Auto-associative memories are intended to store
patterns and to retrieve them from noisy or missing
data. Linear auto-associative memories are single-
layer networks made of interconnected linear units
that operate in parallel.47 Because the representa-
tion of individual stimuli is not localized in the mem-
ory but distributed throughout the entire network,
an auto-associative memory is able to retrieve an
entire pattern of information given only partial or
degraded versions of these stimuli; because of this
property, auto-associative memories are often used
in pattern recognition algorithms and for model-
ing human perceptual learning and memory.1 Lattice

auto-associative memories (LAAMs)77,79 are built
by replacing the linear algebraic functions of linear
auto-associative memories with those of lattice alge-
bra. In algorithms using auto-associative memories,
recall error is the distance between the expected and
actual recall patterns. With LAAM’s, the distance
between the recalled input and the actual input may
be used as a nonlinear measure of similarity, which
may be used as an alternative to correlation measures
in FC analysis. LAAM’s show perfect recall of vec-
tors whose elements are real numbers. In addition,
because LAAM’s can recover stored patterns from
even heavily distorted information, they are robust
to specific types of noise. Because of this latter prop-
erty, the distance between the recalled input and the
actual input may be used as a nonlinear measure of
similarity, which may be used as an alternative to
correlation measures in FC analysis. While methods
involving LAAM-based distance cannot be expected
to reproduce exactly the findings of methods using
Pearson’s correlation coefficient, the LAAM findings
may provide a complementary view of the data.

Besides LAAM-based FC, there are other fea-
tures that can be extracted from rsfMRI data. Local
activity (LA) measures include regional homogene-
ity (ReHo), which measures the correlation between
the fMRI time series of a voxel and that of neighbor-
ing voxels104; and the amplitude of low frequency
fluctuations (ALFF) and fractional amplitude of low
frequency fluctuations (fALFF),107 which measure
the strength of low frequency oscillations (LFOs) of
the fMRI time series. ReHo and fALFF provide infor-
mation about regional homogeneity and activation
magnitude, respectively, and can offer insights that
are complementary to information about FC.

Here, using LAAM-based FC to assess LHG
connectivity with spatially distributed brain regions,
and ReHo and fALFF to assess LA, we demonstrate
high accuracy, sensitivity, and specificity in discrim-
inating SZAH from SZNAH and HC. To our knowl-
edge, this is the first study to apply machine learning
techniques, especially a novel lattice-based FC algo-
rithm, to the classification of schizophrenia patients
with and without AH.

2. Materials

We performed computational experiments on rsfMRI
data from 68 men and women, aged 18–65 years,
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divided in three groups: (i) 26 schizophrenia patients
(14 schizophrenia, 12 schizoaffective disorder, 1
schizophreniform disorder) with a history of AH
(SZAH), (ii) 14 schizophrenia patients (5 schizophre-
nia, 8 schizoaffective disorder, and 1 schizophreni-
form disorder) without a history of AH (SZNAH),
and (iii) 28 HC subjects. Data from one SZAH sub-
ject in the original dataset did not meet the cur-
rent experiment’s criteria for angular head motion
less than 3◦ and were thus not included. The Struc-
tured Clinical Interview for DSM-IV-TR (SCID)22

was administered to confirm axis I diagnosis in
patients and to rule out major psychiatric illness
in HC subjects. Item B16 of the SCID (“Did you
ever hear things that other people could not, such
as noises, or the voices of people whispering or talk-
ing?”) was used to categorize patients into the SZAH
and SZNAH groups; patients scoring threshold/true
on B16 were coded SZAH, and all others SZNAH.
AH severity was assessed with the psychotic symp-
tom rating scale, AH subscale (PSYRATS-AH).32

Subjects were additionally interviewed post-scan
about the presence of AH during image acquisition.
PSYRATS-AH and post-scan debriefing interviews
were not completed in n = 7 SZNAH patients whose
data were acquired as part of a different dataset.
Nearly all (n = 24/26) SZAH patients experienced
verbal AH, as confirmed during the research inter-
view and/or documented in the patients’ medical
records; verbal AH could not be confirmed in two
SZAH patients whose imaging data were originally
acquired as part of a different dataset. For each sub-
ject we acquired 240 blood oxygen level dependent
(BOLD) volumes and one T1-weighted anatomical
image. Detailed participant characteristics (e.g. age,
gender, handedness, illness duration, medication pro-
files) and image acquisition parameters are provided
in the previous paper.81

3. Methods

Our machine learning pipeline involved multiple
steps, which are summarized in Fig. 1 for the specific
lattice computing-based feature extraction approach.
Briefly, they are: (1) Preprocessing. (2) Dimension-
ality reduction, which involved mapping the mul-
tivariate information (BOLD time series) of each
voxel into a scalar measure of activity or connec-
tivity (LAAM-based FC, ReHO, and fALFF). (3)

Feature selection, which involved computing for each
voxel site its saliency as the Pearson’s correlation
coefficient (r) between two vectors, the first is com-
posed the class labels of all the subjects, the second
is composed of the voxel value of the scalar mea-
sure of activity or connectivity across all subjects.
(4) We select the n voxel sites with greatest absolute
r, instead of computing some threshold on the empir-
ical distribution of the absolute r. We performed
the classification experiments for the between-group
comparisons of SZAH versus SZNAH and SZAH ver-
sus HC. For comparison, we also looked at classifica-
tion performance for SZNAH versus HC and SZ ver-
sus HC. For each two-class classification problem, the
feature selection process provides brain region local-
izations that may provide insights about AH patho-
physiology. We provide more details for each of these
steps below.

3.1. Rationale for the approach

Before we present the details of the computational
procedures, we will give an overall justification of
the approach applied, signaling the points of depar-
ture from traditional inference-based approaches.
Traditionally, in brain imaging, statistical inference
approaches are used to detect significant differences
between data from different populations, such as
in voxel-based morphometry (VBM) or analysis of
fMRI task-based data. The process is similar to
alarm raising, failure detection, or target detec-
tion, which represent outlier detection problems, i.e.
involving identification of items that do not comply
with the input data distribution and fall outside the
expected pattern. In this traditional approach, the
problem is stated at the voxel level. The decision
about whether to reject the null hypothesis (of no dif-
ference between groups) is made at each voxel inde-
pendently. When the null hypothesis model is well
known, the problem at each voxel is thereby reduced
to the computation of a single threshold. When the
number of tests is large, correction for multiple com-
parisons avoids false positives due to randomness.
However, multiple comparisons corrections may also
limit detection of real signal by increasing the risk of
false negatives, or type II error.

Machine learning, by contrast, offers a more holis-
tic approach, whereby the aim is to make a deci-
sion about the subject as an entity, i.e. is the
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Fig. 1. Analysis pipeline for the background/foreground (BF)-LAAM-based FC approach. (1) rsfMRI data were pre-
processed, and time series extracted from the specific background (cerebrospinal fluid, CSF) and foreground (right or
left Heschl’s gyrus) regions of interest (RoIs). (2) We then performed dimensionality reduction, reducing the high dimen-
sionality time series data into LAAM-based FC measures. (3) We performed feature selection and extraction, using the
Pearson’s correlation coefficient (r) between the voxel value across subjects and the class label as a saliency measure to
select the voxel sites with the greatest discriminative power. (4) We performed classification using support vector machines
(SVM), and generate spatial maps showing the voxel sites with the features that are most highly discriminative.

person diseased or not? This approach places less
importance on whether a statistically significant dif-
ference exists at any particular voxel. Rather than
attributing to any voxel the credit for the decision,
the goal of data processing is to extract informa-
tive features that contribute to the overall classifica-
tion performance. In the current experiment, we are
also interested in being able to identify localization
information. Therefore, we look for features that map
onto voxel sites that carry some anatomical meaning.
This condition provides natural constraints to fea-
ture selection, and we select voxel sites on the basis
of measures that are most salient in making a holis-
tic decision about the subject. In such a process of
feature selection, threshold-based decisions and mul-
tiple comparisons correction algorithms do not apply.

Finally, we must take into account that fMRI
data, which consist of time series, are characterized

by high dimensionality of information at each voxel.
For computation of the significance measure it is
necessary to reduce such data to a low-dimensional
representation, e.g. a scalar value. To this end, we
computed FC measures and LA measures at each
voxel. For FC we applied a novel lattice computing
approach. The impetus for an alternative connectiv-
ity measure arose from the relative lack of robust
group-wise connectivity results found by conven-
tional linear correlation in our previous work.81 As
we already touch upon in the introduction, LAAMs
can serve as a nonlinear measure of connectivity. The
construction of LAAMs is equivalent to the process
of embedding data within a simplex (m-simplex is
the convex hull of m + 1 affine independent points,
which are the vertices of the simplex; in this way,
a 1-simplex is a line segment, a 2-simplex is a tri-
angle and a 3-simplex is a tetrahedron, etc.)78; so
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that transformations are naturally bounded and pro-
jected into the simplex boundaries. Because of their
unique geometric architecture, LAAMs: (1) remove
the effect of data outliers that can give rise to unde-
sired connectivity,10,28 (2) are robust to specific dila-
tive and erosive types of noise to which fMRI data
are vulnerable,75,77,79 and (3) contain maximally
discriminant information within the convex trans-
formations of the data.30 While we do not expect
LAAM-based FC to reproduce exactly the findings
of methods using Pearson’s correlation coefficient,
the LAAM-based findings may provide an alterna-
tive and complementary view of the data. In addition
to LAAM-based FC, we also extract LA features,
which measure the activity at a voxel or regional
level. We expect that these local measures may reveal
discriminant spatial distribution of the neural activ-
ity between populations.

3.2. Preprocessing

Data preprocessing began with skull removal
using the brain extraction tool (BET) from FSL
(http://www.fmrib.ox.ac.uk/fsl/). Images were man-
ually oriented to the AC-PC line. The functional
images were coregistered to the T1-weighted anatom-
ical image. Using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (http://www.
restfmri.net/forum/DPARSF) software package, the
functional images were slice timing corrected, motion
corrected (using a least squares approach and
a 6-parameter spatial transformation), smoothed
(FWHM =4mm), spatially normalized to the MNI
template (resampling voxel size = 3 mm × 3 mm ×
3 mm), temporally band pass filtered (0.01–0.08 Hz)
to remove very low frequency physiological noise and
high frequency noise from non-neurological sources,
and removed of linear trends. Mean BOLD time
courses for head motion, global brain signal, white
matter, and CSF were regressed out before FC anal-
ysis. All the subjects had less than 3mm maximum
displacement and less than 3◦ of angular motion.

3.3. Dimensionality reduction

Each voxel contains fMRI time series data, which
have high dimensionality. Prior to feature selection
and extraction, the data need to be reduced to a
low-dimensional representation, e.g. a scalar value.

To this end, we computed FC measures and LA mea-
sures at each voxel.

3.3.1. FC measures derived from LAAMs

Conventionally, FC is calculated as the time course
correlation between a target ROI and other brain
voxels. By contrast, in a lattice computing approach
to FC, fMRI time series are stored as LAAMs, and
FC is defined as the recall error, which is the distance
between the expected and actual recall pattern when
presenting the input to the memory.

Given a set of input/output pairs of real val-
ued patterns (X, Y ) = {(xξ,yξ)}k

ξ=1, Lattice Hetero-
Associative Memories (LHAM) are the morphologi-
cal counterpart of the linear associative memories,
defined by exchanging the conventional multiplica-
tion and addition operators by minimum/maximum
and addition operators, respectively, i.e. defining the
dual lattice dilative and erosive matrix multiplica-
tions ∨� and ∧� . Two dual constructions of LHAMs
were originally proposed in Refs. 77 and 79: ero-
sive LAM WXY =

∧k
ξ=1[y

ξ × (−xξ)′], and dilative

LAM MXY =
∨k

ξ=1[y
ξ × (−xξ)′]. In these expres-

sions, operator × can be any of the ∨� or ∧� oper-
ators, since yξ ∨� (−xξ)′ = yξ ∧� (−xξ)′. A special
case of LHAM happens when X = Y , then WXX

and MXX ; this is called LAAMs. LAAMs have been
applied to hyperspectral endmember induction,29

brain fMRI data segmentation,30 and pattern clas-
sification based on the LAAM’s recall error mea-
sured by the Chebyshev distance.87 Given dilative
LAAM MXX , the recall of input of vector x is
x#

M = MXX ∧� x, and the recall error measured by
the Chebyshev’s distance:

hX(x) = dC(x#,x), (1)

where dC(a,b) =
∨n

i=1 |ai − bi|, is the Chebyshev
distance between two vectors. Function hX(x), which
is the one-sided (OS)-LAAM h-function, can be used
as a projection function from the high dimensional
pattern space to a scalar magnitude. The erosive
memory WXX recall, i.e. x#

W = WXX ∨� x, could be
used alternatively.

A Background/Foreground (BF)-LAAM h-func-
tion is constructed by two OS-LAAM h-functions
hB and hF , induced by dilative LAAMs MBB and
MFF constructed on different training sets, i.e. back-
ground B and foreground F , respectively. We define
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the BF-LAAM h-function hr(x) combining both hB

and hF as follows:

hr(x) = hF (x) − hB(x), (2)

which is positive for x ∈ F(B), and negative for
x ∈ F(F ), where F(X) is the set of fixed points
of MXX . Therefore, hr(x) is a discriminant function
such that hr(x) > 0 corresponds to data samples in
the background class, and hr(x) < 0 to data sam-
ples in the foreground class. The decision boundary
is such that hr(x) = 0.

When dealing with fMRI data, the training
datasets correspond to brain ROI time series. Com-
puting either the OS or the BF-LAAM h-function

for each voxel in an fMRI volume produces a scalar
valued 3D h-map over the brain volume, which is a
measure of the FC with this ROI used as the basis
for feature selection and extraction for classification.

Here, we performed connectivity analysis to find
the functional networks connected to the left (LHG)
and right Heschl’s gyrus (RHG) (Fig. 2) for each
subject, following previous statistical inference works
on correlation-based FC.81 We computed the OS-
LAAM h-function, for which the training dataset X

are the fMRI time series in the selected ROI. We
also computed the BF-LAAM h-function, where the
background training dataset B corresponds to the
CSF ROI extracted from the brain ventricle voxels

(a)

(b)

(c)

Fig. 2. The ROIs used for LAAM based connectivity analysis. The fMRI time series from LHG (10 mm, MNI coordinates
[−42,−26, 10]) (a) and RHG (10mm, MNI coordinates [46,−20, 8]) (b) were used to compute the left and right OS-LAAM
h-functions, respectively. We also computed the BF-LAAM h-functions, where the fMRI time series from the CSF (10mm,
MNI coordinates [−15,−26, 10]) (c) was set as the background training dataset and the fMRI time series from the LHG
(a) or RHG (b) were set as the foreground training dataset.
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(MNI coordinates −15,−26, 10), and the Foreground
training dataset F is the average time signal from a
selection of voxels in the LHG or the RHG (MNI
coordinates 46,−20, 8).81

3.3.2. Local fMRI activity measures

We also computed local fMRI activity measures,
which correspond to values measuring local proper-
ties of the signal:

(1) ReHo is a local measure of the homogeneity
of brain activity which computes the Kendall’s
Coefficient of Concordance (W ) between the
time series of a given voxel and its nearest
neighbors.104 Given a collection of vectors {xj ∈
R

n}k
j=1, which in our study correspond to voxel

time series, the Kendall’s Coefficient of Concor-
dance46 is computed as follows:

W =
∑

i(Ri)2 − n(R)2
1
12k2(n3 − n)

, (3)

where Ri =
∑k

j=1 rij , and rij is the rank of the
ith time point in the jth voxel. The value of W

ranges from 0 to 1. R = (n + 1)k/2 is the mean
of the Ri. In our study W is used as a measure of
the homogeneity of the neighborhood of a voxel
in the ReHo measure. We apply a conventional
3D neighborhood, which is a 3D window around
the voxel of dimensions 3× 3×3 mm3. The W

values are standardized and smoothed (4mm
FWHM) to build a voxel-based scalar map for
each subject.

(2) ALFF103 and fALFF107 are measures of the
strength of low LFOs of the BOLD signal. ALFF
is defined as the total power within the fre-
quency range between 0.01 and 0.1Hz. fALFF
is the relative contribution of specific LFO to
the power of whole frequency range, defined as
the power within the low-frequency range (0.01–
0.1Hz) split by the total power in the entire
detectable frequency range.108 In the current
paper, we focus on fALFF.

3.4. Feature selection and extraction

Feature extraction gathers the values of the most
salient voxels into a feature vector, used for classifi-
cation. For this step, we computed the voxel saliency
map. That is, for each voxel site, we computed the

Pearson’s Correlation Coefficient (r) between its vec-
tor of values of the scalar feature across subjects with
the class label categorical variable.

The Pearson’s Correlation Coefficient (r) is a
measure of the linear correlation between two ran-
dom variables samples given by vectors x,y ∈ R

n, it
is computed as follows:

r =
n
( ∑

i xiyi

) − ( ∑
i xi

)( ∑
i yi

)
√[

n
∑

i x2
i − (∑

i xi

)2][
n

∑
i y2

i − ( ∑
i yi

)2] ,

(4)

so that r ∈ [−1, 1], r = 1 means that two variables
have total positive correlation, and r = −1 means
that they have total negative correlation, and r = 0
that there is no correlation at all. We use r between
the voxel value across subjects and the class label
variable as a saliency measure to select the voxel
sites with the greatest discriminative power. Voxel
sites with near zero r are not informative and can be
discarded. Both positive or negative r values mean
that the voxel site value can be an informative fea-
ture for classification.

Each classification experiment involves a separate
saliency map, that is one per each scalar feature map
and classification problem: We have explored the dis-
crimination between each possible pair of classes:
SZAH versus SZNAH, SZAH versus HC, SZNAH
versus HC, and HC versus schizophrenia.

Feature selection looks for the n voxel sites with
the largest absolute r values. Experiments are per-
formed considering the following feature vector sizes:
n = 500, 1000, 5000, 10,000. Figures 3 and 4 show the
regional localizations corresponding to feature vector
dimension 1000 for the voxel saliency 3-dimensional
maps obtained from OS LAAM h-function, BF
LAAM h-function, and correlation-based FC com-
puted using either LHG or RHG ROIs, respectively.
The brain regions were identified using the Har-
vard Oxford cortical atlas via the atlas query tool
in FSL (http://www.fmrib.ox.ac.uk/fsl/). We show
the localization results for the 1000 feature vector
dimension because classification results across fea-
ture vector dimensions are similar, and the clusters
in the 1000 dimension experiments are larger and
thus easier to visualize.

Feature extraction builds the actual feature vec-
tors extracting the selected voxel site values from
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Fig. 3. (Color online) Localization of feature voxel sites selected from the BF-LAAM h-function map with foreground
seed extracted from the LHG ROI, when discriminating SZAH from SZnAH populations. Colorbar is proportional to voxel
saliency.

Fig. 4. (Color online) Localization of feature voxel sites selected from the BF-LAAM h-function map with foreground
seed extracted from the RHG ROI, when discriminating SZAH from SZnAH populations. Colorbar is proportional to
voxel saliency.
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the scalar feature map of each subject. Therefore,
we have separate feature datasets for each classifi-
cation experiment, scalar feature (i.e. FC and local
activity measures), and feature vector size.

3.5. Classification by SVM

SVM,8,53,90 have become the de facto standard
classifier construction method..9,26,43,88,99 Given a
training dataset composed of n-dimensional fea-
ture vectors xi ∈R

n, i = 1, . . . , l and correspond-
ing class labels yi ∈ {−1, 1}, (patients are labeled as
−1 and control subject as 1), the objective is to
build using training data a discriminating function
f(x) = sign(

∑
αiyiK(si,x) + w0), that will cor-

rectly classify new examples (x, y). In this expres-
sion, K(., .) is a kernel function, αi is a weight
derived from the SVM process, and the si are the
so-called support vectors. SVM training seeks the
set of support vectors providing the decision hyper-
plane that is maximally distant from the samples
of the two classes. When no linear separation of
the training data is possible, the kernel transfor-
mation K(xi,xj) ≡ φ(xi)T φ(xj) enables mapping
of the decision hyperplane into a nonlinear decision
boundary in the higher dimensional space defined by
the implicit function φ(xi). This higher dimensional
space may be even of infinite dimension for some
kernel functions, such as the Radial Basis Function
(RBF) kernel. Training is achieved by solving the
following optimization problem minw,b,ξ

1
2w

T w +
C

∑l
i=1 ξi, subject to yi(wT φ(xi) + b) ≥ (1 − ξi),

ξi ≥ 0, i = 1, 2, . . . , n. In fact, C > 0 is a regular-
ization parameter used to balance the model com-
plexity and the training error. The dual optimization
problem is formulated as minα

1
2αTQα− eT α, sub-

ject to yT α =0, 0 ≤ αi ≤ C, i = 1, . . . , l, where e
is the vector of all ones, and Q is an l × l positive
semi-definite matrix, such that Qij ≡ yiyjK(xi,xj).
In this study we use the linear kernel, which is the
minimal complexity approach requiring no model
selection procedures for parameter tuning. Perform-
ing model selection of kernel parameters may intro-
duce an additional bias in the results, independent
from the significance of the extracted features. Solv-
ing the dual problem, we obtain the contribution of
specific sample vectors, the support vectors, to the
construction of the decision function. In some cases
it is possible to obtain qualitative information from

the support vectors, when they can be interpreted as
representatives of desired features.

We applied a 10-fold cross-validation strategy,
repeated 100 times. Thus, before applying SVM for
classification, we split the data into 10 sets. We used
the first nine sets to train the classifier, and the 10th
set to test the data using the constructed classifier.
The procedure is repeated using each partition as
test set and the remaining as training set.

4. Results

Tables 1–3 contain the average accuracy, sensitivity,
and specificity, respectively, classification of cross-
validation experiments. The columns in each table
correspond to specific sizes of the feature vectors.
Rows are grouped by classification problem, i.e. HC
versus SZAH, HC versus SZ, HC versus SZnAH,
and SZnAH versus SZAH. The HG column speci-
fies which hemisphere Heschl’s Gyrus has been used
as seed ROI for FC feature extraction, either left
(L) or right (R). Rows correspond to the specific
scalar feature method and specific conditions. ‘OS-
LAMM’ and ‘BF-LAAM’ rows give the results of cor-
responding h-maps applied to compute the FC mea-
sures to either the LHG or RHG. ‘ReHo’, ‘ALFF’ and
‘fALFF’ mean that the scalar maps are computed as
the corresponding local functional activity measures.
Two-sided t-tests were computed on all the stored
results of the 10-fold cross-validation.

4.1. Classification performance
according to group contrasts

SZAH versus SZNAH:

• FC:

— BF-LAAM: Features from RHG-seeded FC
were more discriminant than features from
LHG-seeded FC (p < 0.01). Both achieved
100% accuracy at feature vector dimension 500,
but LHG-seeded FC degraded strongly with
increasing vector dimension, due to decreasing
specificity.

— OS-LAAM: there were no significant differ-
ences in performance between RHG-seeded and
LHG-seeded FC (p > 0.01). Both of these fea-
tures achieved 100% sensitivity but poorer
specificity.
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Table 1. Average accuracy of cross-validation results, feature vector size per columns.

Measure Feat. Map. HG 500 1000 5000 10,000

SZAH versus SZNAH FC OS-LAAM L 97.5 97.5 97.5 92.5
R 92.5 92.5 95 95.2

BF-LAAM L 100 97.5 95 90
R 100 100 100 100

LA ReHo — 100 100 100 100
ALFF — 85 87.5 92.5 92.5
fALFF — 97.5 100 100 97.5

SZAH versus HC FC OS-LAAM L 43.7 42.7 30.7 28.3
R 52.3 50 33 28

BF-LAAM L 96.7 98 96.3 93
R 98.3 96 92.7 93

LA ReHo — 98 98.3 96.7 96.6
ALFF — 48.7 49 30.3 31.7
fALFF — 100 100 98.3 98.3

SZNAH versus HC FC OS-LAAM L 65 63 59.5 55
R 74 70 60 55

BF-LAAM L 100 100 95.5 93
R 100 98 95.5 93.5

LA ReHo — 97.5 98 95.5 96
ALFF — 78 76 62 53
fALFF — 100 100 100 100

SZ versus HC FC OS-LAAM L 32.4 31 26 25
R 41.4 36.7 26.9 25.2

BF-LAAM L 95.5 97.1 88.6 85.7
R 94.3 91.2 86.7 87.1

LA ReHo — 95.7 95.7 97 95.5
ALFF — 48.8 42.9 35.2 35.2
fALFF — 98.5 100 97.1 97.1

Note: Rows correspond to scalar feature mappings. Column HG indicates the left (L) or right (R) Hes-

chl’s Gyrus ROI. Results above 90% are highlighted in bold. Key to abbreviations: FC= Functional

connectivity, LA= Local Activity, OS-LAAM=one-sided lattice auto-associative memories, BF-

LAAM= background/foreground lattice auto-associative memories, ReHo= regional homogeneity,

ALFF =amplitude of low frequency fluctuations, fALFF = fractional amplitude of low frequency

fluctuations.

• LA: ReHo achieved 100% accuracy, sensitivity,
and specificity across all four tested feature vector
dimensions. A two-sided t-test revealed no statis-
tically significant differences between fALFF and
ReHo (p > 0.01). On the other hand, ALFF per-
formed significantly worse than ReHo (p < 0.01).
This appears to be due to low specificity (75–85%)
in spite of high sensitivity (96.7–100%).

SZAH versus HC:

• FC:

— BF-LAAM: There were no significant differ-
ences between RHG-seeded FC and LHG-
seeded FC (p > 0.01).

— OS-LAAM: There was no difference between
RHG- and LHG-seeded FC (p > 0.01); both
performed poorly in the ranges of 28–52.3%
and 28.3–43.7% accuracy, respectively, due to
very low sensitivity.

• LA: fALFF and ReHo reached 100% and 98.3%
accuracy, respectively. Despite having close values,
statistically, fALFF showed higher discriminative
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Table 2. Average sensitivity of cross-validation results, feature vector size per columns.

Measure Feat. Map. HG 500 1000 5000 10,000

SZAH versus SZNAH FC OS-LAAM L 100 100 100 100
R 100 100 100 100

BF-LAAM L 100 100 100 100
R 100 100 100 100

LA ReHo — 100 100 100 100
ALFF — 96.7 96.7 100 100
fALFF — 100 100 100 100

SZAH versus HC FC OS-LAAM L 28.3 21.7 11.7 8.3
R 38.3 30 18.3 10

BF-LAAM L 96.7 96.7 93.3 85
R 96.7 93.3 91.7 93.3

LA ReHo — 100 100 96.6 96.7
ALFF — 45 41.7 21.7 18.3
fALFF — 100 100 100 100

SZNAH versus HC FC OS-LAAM L 40 40 20 15
R 50 40 25 20

BF-LAAM L 100 100 90 80
R 100 95 90 85

LA ReHo — 100 100 95 95
ALFF — 60 50 30 20
fALFF — 100 100 100 100

SZ versus HC FC OS-LAAM L 30 27.5 17.5 20
R 40 35 25 22.5

BF-LAAM L 97.5 100 95 92.5
R 95 95 90 92.5

LA ReHo — 100 100 96.6 96.7
ALFF — 47.5 45 37.5 35
fALFF — 97.5 100 97.5 97.5

Note: Rows correspond to scalar feature mappings. Column HG indicates the left (L) or right (R) Hes-

chl’s Gyrus ROI. Results above 90% are highlighted in bold. Key to abbreviations: FC= Functional

connectivity, LA= Local Activity, OS-LAAM=one-sided lattice auto-associative memories, BF-

LAAM= background/foreground lattice auto-associative memories, ReHo= regional homogeneity,

ALFF =amplitude of low frequency fluctuations, fALFF = fractional amplitude of low frequency

fluctuations.

ability than ReHo and BF-LAAM (p < 0.01). On
the other hand, ALFF performed poorly due to
low sensitivity.

SZNAH versus HC:

• FC:

— BF-LAAM: There were no significant dif-
ferences between RHG-seeded FC and

LHG-seeded FC (p > 0.01), both achieved
100% accuracy, sensitivity, and specificity.

— OS-LAAM: There were no significant differ-
ences between RHG-seeded FC and LHG-
seeded FC (p > 0.01), both showed poor dis-
criminative ability, with accuracy below 80%,
at best. Specifically had very low sensitivity.

• LA: ReHo showed 95.5–98% accuracy, 95-100%
sensitivity, and 96.7% specificity. ALFF showed
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Table 3. Average specificity of cross-validation results, feature vector size per columns.

Measure Feat. Map. HG 500 1000 5000 10,000

SZAH versus SZNAH FC OS-LAAM L 95 95 95 85
R 80 85 90 85

BF-LAAM L 100 95 90 75
R 100 100 100 100

LA ReHo — 100 100 100 100
ALFF — 75 75 85 85
fALFF — 95 100 100 95

SZAH versus HC FC OS-LAAM L 63.3 71.7 51.7 51.7
R 70 75 53.3 50

BF-LAAM L 100 100 100 100
R 100 100 97.7 96.7

LA ReHo — 96.7 96.6 96.7 96.7
ALFF — 65 58.3 46.7 51.7
fALFF — 100 100 96.7 96.7

SZNAH versus HC FC OS-LAAM L 81.7 83.3 81.7 78.3
R 90 90 81.7 76.7

BF-LAAM L 100 100 100 100
R 100 100 100 100

LA ReHo — 96.7 96.7 96.7 96.7
ALFF — 90 93.3 83.3 73.3
fALFF — 100 100 100 100

SZ versus HC FC OS-LAAM L 55 40 38.3 40
R 46.7 45 36.7 35

BF-LAAM L 93.3 95 83.3 76.7
R 96.7 90 85 83.3

LA ReHo — 96.7 96.7 96.7 96.7
ALFF — 56.7 48.3 40 41.7
fALFF — 100 100 96.7 96.7

Note: Rows correspond to scalar feature mappings. Column HG indicates the left (L) or right (R) Hes-

chl’s Gyrus ROI. Results above 90% are highlighted in bold. Key to abbreviations: FC= Functional

connectivity, LA= Local Activity, OS-LAAM=one-sided lattice auto-associative memories, BF-

LAAM= background/foreground lattice auto-associative memories, ReHo= regional homogeneity,

ALFF =amplitude of low frequency fluctuations, fALFF = fractional amplitude of low frequency

fluctuations.

poor discriminative ability, with 78% accuracy at
best, due to low sensitivity. fALFF achieved 100%
accuracy, sensitivity, and specificity across all four
feature vector dimensions, significantly better than
ReHo (p < 0.01).

SZ versus HC:

• FC:

— BF-LAAM: Though LHG-seeded FC provide
some improvement over RHG-seeded FC, the

difference was not statistically significant (p >

0.01). Both approaches give high sensitivities
and low specificities.

— OS-LAAM: Both RHG-seeded FC and LHG-
seeded FC showed poor performance, with
both low accuracy and sensitivity.

• LA: ALFF showed poor discriminative ability.
fALFF achieved 100% accuracy, sensitivity, and
specificity and performed significantly better than
ReHo (p < 0.01), which achieved 97% accuracy.
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Fig. 5. (Color online) Localization of feature voxel sites selected from the ReHo, when discriminating SZAH from SZnAH
populations. Colorbar is proportional to voxel saliency.

Fig. 6. (Color online) Localization of feature voxel sites selected from the fALFF, when discriminating SZAH from
SZnAH populations. Colorbar is proportional to voxel saliency.
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4.2. Results according to feature vector
dimension

An F -test performed on the accuracy of all meth-
ods aggregated by feature vector size shows that
there is significant differences due to dimensionality
(p < 0.01). Post-hoc t-tests show that the dimension
size of 500 provided the best classification perfor-
mance (p < 0.001). The feature vectors of dimension
10,000 tended to show the worst classification results.

When discriminating between the SZAH and
SZNAH groups, dimensionality did not seem to make
a difference with LAAM-based FC measures or with
ReHo and fALFF; there was 100% accuracy across
all four feature vector dimension sizes tested. The
exception was with ALFF, where lower dimensional-
ity (500, 1000) yielded accuracy of 96.7% instead of
100%.

4.3. Cortical brain regions associated
with discriminant voxels

Tables 4 and 5 list the cortical brain regions to
which the discriminant features extracted from the
BF-LAMM h-map and the ReHo and fALFF activ-
ity maps localized. Figures 3–6 show the cortical
brain regions that were most discriminating between
SZAH and SZNAH with the feature measures: LHG
seeded BF-LAAM h-map 3, RHG-seeded BF-LAAM
4, ReHo 5, and fALFF 6, respectively, with feature
vector size of 1000. Each figure presents eight views
of the brain cortex, and the feature sites are pro-
jected over the cortex as colored regions following a
color coding given by the colorbar, with colors cor-
responding to values of the voxel saliency. The range
of values of the color bar change from one figure to
another as the range of values of the voxels saliencies
change from one classification problem to another.

5. Discussion and Conclusions

In this study, we investigated the discriminative
value of LAAM-based FC measures as well as local
fMRI activity measures (ReHo, ALFF, and fALFF)
in differentiating schizophrenia patients with life-
time history of AH from schizophrenia patients with-
out lifetime AH and HC. We found BF-LAAM,
ReHo, and fALFF to provide the strongest classi-
fication performance in discriminating both SZAH
from SZNAH and HC. The features extracted from
the OS-LAAM h-maps and ALFF reached accuracy

above 90% only in the SZAH versus SZNAH con-
trast.

Discriminating hallucinators

The classification performance for SZAH versus
SZNAH was superior to that for SZAH versus HC.
This was a surprising finding, as one might expect
larger brain differences between patients and healthy
individuals than between two groups of patients with
the same diagnosis, and thus expect discrimination
between SZAH and HC to be more robust. This
was not the case. In fact, classification experiments
on the discrimination of SZ versus HC showed the
worst performance. From a purely computational
perspective, the unequal sample sizes between the
HC (n = 28) and schizophrenia (n = 40) groups may
explain some, but not all, of the decrease in classi-
fication performance, because SVM is known to be
sensitive to this feature of the data. The degradation
in classification performance may also be due to the
heterogeneity of the schizophrenia group, which con-
sists of two subgroups (SZAH and SZNAH) which are
already discriminable. Overall, however, these results
suggests that FC and local fMRI activity differences
associated with the presence or absence of lifetime
AH history in patients with schizophrenia are valid
biological measures upon which patients can be dif-
ferentiated. That classification on the basis of AH
outperformed classification according to the presence
or absence of schizophrenic illness provides support
for the National Institute of Mental Health (NIMH)
Research Domain Criteria (RDoC) initiative37,38 to
find new, neuroscience-based frameworks for classify-
ing mental illness, rather than confine study designs
to traditional diagnostic categories.

Comparing FC features

Another surprising finding was the superiority of
RHG relative to LHG seeded FC measures in dis-
criminating SZAH from SZNAH. While the origi-
nal study by members of our group81 showed SZAH
patients to have only LHG seeded FC abnormalities,
and no RHG seeded FC abnormalities, the current
analyses applying machine learning algorithms found
RHG connectivity to show the best classification per-
formance. Most accounts of AH pathogenesis focus
on the role of the left hemisphere, where most speech
and language functions are lateralized. Prosody and
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emotional valence, by contrast, are lateralized in the
right hemisphere. It has been argued that prosody is
what causes one to perceive a thought as being one’s
own, and that changes in prosodic tone may cause
inner speech to be misattributed and experienced as
AH.12 Our finding of stronger discriminative power
of RHG seeded FC measures is in line with evidence
for right auditory cortex dysfunction58 and temporal
lobe lateralization abnormalities66,67 in schizophre-
nia patients with AH. The differences in the laterality
of findings between the original and current studies
may be due to signfiicant methodological differences
in data analysis. For example, the current machine
learning approach used BF-LAAM, a novel lattice-
based measure, to compute FC. And as we describe
in Sec. 1, LAAMs are highly robust to certain types
of noise in rsfMRI. Importantly, in the current study,
we applied a machine learning model, which makes
more holistic decisions about the subject as an entity;
this is a fundamentally different approach than tra-
ditional statistical inference methods, which rely on
significance testing at the voxel level.

Feature localization and interpretation

We attribute high pathophysiological significance to
the discriminant voxel sites achieving high classifi-
cation results, and the brain localizations derived
from the features with strong classification perfor-
mance may have biological significance relative to
the pathophysiology of AH. Specifically, BF-LAAM
h-maps from both LHG and RHG seeds provide FC
information which can be interpreted in the context
of existing models of AH. Voxels localizing to the
left IFG (or Broca’s area) emerged as highly dis-
criminant in classification experiments using LHG
seeded FC. The left IFG was found to be significant
in meta-analyses of AH activity40,49 and is centrally
featured in inner speech models of AH.42 The IFG
also plays a role in corollary discharge accounts of
AH, along with auditory and speech regions in tem-
poral cortex.23 Voxels in temporal cortical regions
were highly discriminant, with left middle tempo-
ral gyrus (MTG) and right temporal pole emerging
as significant in LHG FC and left STG emerging in
the LHG FC experiment. The finding of discrimi-
nant voxels in the parahippocampal gyrus is consis-
tent with memory-based models of AH94 and with
the finding that AH in schizophrenia patients are

consistently preceded by deactivation of the parahip-
pocampal gyrus.15,35 Of interest, our findings show
Heschl’s gyrus-parahippocampal gyrus FC abnor-
malities that are interhemispheric, i.e. RHG showed
abnormal connectivity with left parahippocampal
gyrus, and LHG showed abnormal connectivity with
right parahippocampal gyrus. Finally, highly dis-
criminate voxels were found in the cingulate cortex
and frontal cortical regions; both of these regions fea-
ture prominently in AH models relating to a fail-
ure of top-down inhibitory control3,36 as well as
those involving source-monitoring deficits.93 As can
be seen, the FC information provided by BF-LAAM
features is in agreement with the expected effects.
Further detailed analysis may provide more light into
the directions of these effects.

Comparing the group-wise LHG FC findings
reported for SZAH versus SZNAH in Ref. 81 with
the FC results from the current study (Table 4),
we find only two regions — the left middle frontal
gyrus and right parahippocampal gyrus — in com-
mon. As previously mentioned, significant differences
in analytic approach may account for the lack of
greater overlap in findings. In particular, the group-
wise SZAH versus SZNAH findings in the original
paper were less robust than those resulting from the
AH covariate analysis in the same study. This may
have been attributable to the relatively small sample
size of the nonhallucinating group of patients, who
are rarer in schizophrenia and thus more challeng-
ing to recruit. The current approach, which uses a
FC measure based on nonlinear lattice computing,
may be statistically more robust and less vulnera-
ble to type II error. Notably, both the current study
and analysis examining AH as a continuous variable
in Ref. 81 show abnormal LHG seeded FC in left
IFG (Broca’s area), a speech/language region that is
clearly important in several models of AH.

The ReHo map identifies regions of homogeneous
activity, which may reflect the extent of synchronized
neural activity within specific regions. ReHo showed
strong classification performance in discriminating
patients with and without AH history. Looking at the
ReHo feature localizations in Table 5 we find many
regions of the frontal, temporal, somatosensory, and
the limbic system (cingulate gyrus and subcallosal
cortex), covering the expected areas described by AH
generation models. The fALFF map identifies voxels
of high/low activity in the low frequency spectrum
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of the signal. The regions reported in Table 5 also
meet the expectation of the aforementioned models,
including the language areas, the auditory percep-
tual areas as well as the emotional areas, and the
insular cortex in charge of self-recognition.

Limitations

The current analysis did not take into account clini-
cal or demographic variables other than schizophre-
nia diagnosis and lifetime history of AH. However,
as described in the original paper,81 the SZAH and
SZNAH groups were clinically comparable. Improved
preprocessing of rsfMRI data, for example, by apply-
ing innovative signal filtering algorithms for the
removal of physiological noise,73,74 may increase con-
fidence in the biological significance of the reported
findings. The application of machine learning to mul-
tiple imaging modalities rather than to rsfMRI data
alone69 would also help to confirm our results. In
addition, classification could be further enhanced
by innovative unsupervised56,60 or supervised4,39

approaches. Finally, while the brain localizations
derived from features with strong classification per-
formance provide information about brain areas that
likely have biological relevance in AH pathophysi-
ology, the discriminant voxels do not contain infor-
mation about the directionality of connectivity (i.e.
hyper- or hypoconnectivity) with LHG and RHG. In
spite of these potential limitations, we demonstrate
that classification using BF-LAAM-based functional
connectivity, and local fMRI measures like ReHo and
fALFF are extremely robust in discriminating SZAH
from SZNAH and HC.

Conclusion

This study is the first to classify schizophrenia
patients on the basis of lifetime AH by applying
a machine learning approach to resting state fMRI
data. Using a novel LAMM algorithm, in addition
to measures of more local fMRI activity including
ReH and FALFF, we demonstrate robust ability to
discriminate schizophrenia patients with a history
of AH from those who have never experienced AH.
For all classification measures, classification accord-
ing to the presence or absence of AH was superior
to classification on the basis of psychiatric diagno-
sis, offering support for dimensional, symptom-based

approaches. LAAM-based FC seeded in right hemi-
sphere Heschl’s gyrus showed stronger discrimative
value than FC measures seeded in LHG, providing
possible evidence in support of AH models that focus
on right hemisphere brain abnormalities.
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