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Abstract
Neuroprostheses are systems based on FES, which is a technique that applies
electrical pulses to peripheral nerves in order to substitute lost sensory/motor
functions. Neuroprostheses are aimed at people with neurological disorders that
present motor dysfunctions. Indeed, they have been found to positively influence
motor recovery in neurologically impaired people, supporting the restoration of
lost motor functions. Surface neuroprostheses are not invasive and they are easy
to don/doff, which makes them preferred for therapeutic applications. However,
their main disadvantage is the reduced capacity of selectively activating target
nerve fibers. Selective activation with surface neuroprostheses requires well-
directed and local currents with rather high density. This can lead to discomfort
and difficulties for achieving fine movements. The latter is an issue in upper-
limb applications as forearm and hand are comprised of several small overlapped
muscle layers. In fact, the complex neuroanatomy of the forearm and hand, its
dimensionality, the diverse non-cyclic tasks and the inter-subject variability of
movements, have resulted in few available neuroprostheses for grasping. The
increase in selectivity enabled by multi-field electrodes together with knowledge
on FES-induced discomfort and FES-induced hand movements could thus move
grasping neuroprostheses a step forward.

In this thesis I analyzed the discomfort differences of two stimulation tech-
niques applied with multi-field electrodes in 15 healthy subjects. Additionally, I
represented the spatial distribution of discomfort rates of different upper-limb ar-
eas in form of pain-maps, which were obtained from 11 chronic stroke subjects.
Regarding modeling, I carried out a feasibility study to check the possibility of
using neuro-fuzzy structures for modeling hand movements induced by a sur-
face FES system based on multi-field electrodes. Finally, I tested and compared
different neuro-fuzzy structures trained with data collected from 3 able-bodied
and 3 brain injured hemiplegic subjects.

The discomfort analysis showed that asynchronous stimulation was pre-
ferred over synchronous stimulation in terms of discomfort. Regarding the
spatial distribution of discomfort on the arm, no significantly painful spots
were found along the forearm, whereas most proximal fields of the upper-arm
were found to be significantly more painful. With respect to modeling, the
recurrent fuzzy neural network was found successful for predicting wrist and
finger flexion/extension behavior with stimulation parameters and application
site as inputs. Different structure parameters and learning strategies showed
a high inter-subject variability in the model performance. In any case, these
models showed the capacity of successfully approximating the FES-induced
hand kinematics for both able-bodied and neurologically impaired subjects.
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Both the discomfort analysis and the neuro-fuzzy models presented in this
thesis pretend to support the design and development of advanced surface neuro-
prostheses for grasping. The generated knowledge on FES-induced discomfort
can be used as a guide for developing more comfortable FES based upper-limb
applications. Analogously, the presented models can be used to support the
design and development of successful neuroprostheses and control techniques
for advanced grasping.



Laburpena
Neuroprotesiak estimulazio elektriko funtzional (FES ingeleseko siglen

arabera) teknikan oinarritutako sistemak dira, eta FES teknika nerbio periferi-
koetan pultsu elektrikoak igortzean datza, galdutako funtzio motor/sentsorialak
ordezkatzeko asmoz. Gorputz-adarretako neuroprotesiak disfuntzio motoreak
dituzten pertsonei bideratuta daude, gaitz neurologikoak pairatzen dituzten per-
tsonei, hain zuzen. Funtzio motorea ordezkatzeaz gain, neuroprotesiek ondorio
onuragarriak eragiten dituzte gaitz neurologikoak pairatzen dituzten gaixoen-
gan, galdutako funtzioen errehabilitazioa bermatuz. Gainazal-neuroprotesiak
ez dira inbaditzaileak, azalaren gainetik jartzen baitira. Jarri eta kentzeko erra-
zak direnez aplikazio terapeutikoetarako egokienak dira. Dena dela, hauen
desabantaila nabarmenena nerbio-zuntzak era selektiboan aktibatzeko ahalmen
murriztua da. Ezaugarri honek erabiltzailearengan sentsazio deserosoa eta
mugimendu finak eragiteko zailtasunak gauzatu ditzake. Azkenengo hau arazo
bihurtzen da besaurrea eta eskuko aplikazioetan, biak bata bestearen gainean
kokatutako gihar txiki ugariz osatuta daudelako. Izan ere, eskurako neuro-
protesi erabilgarri gutxi existitzen dira eta hauek oraindik nahiko mugatuak
dira. Arrazoiak, besteak beste, beasurre eta eskuko neuroanatomia konplexua,
eskuaren dimentsionalitatea, mugimendu ez-zikliko ugariak eta erabiltzaileen
arteko desberdintasunak dira. Beraz, multi-zelai elektrodoen selektibitatea
hobetzeko ahalmenak, eta FES-ek eragindako deserosotasunaren eta mugi-
menduen gaineko jakintzak, eskurako neuroprotesien garapenean narbarmen
lagundu dezake.

Tesi honetan multi-zelai elektrodoen bidez igorritako bi estimulazio tekniken
arteko deserosotasun desberdintasuna aztertu dut 15 pertsona osasuntsurengan.
Bestalde, goiko gorputz-adarreko atal desberdinetako deserosotasun distribuzio
espaziala aztertu dut gaitz neurologikodun 11 gaixorengan eta deserosotasun
mapen bidez adierazi dut. Ereduei dagokienez, neuro-fuzzy egitura motako
ereduak neuroprotesiak eragindako esku mugimenduak aurreikusteko gai diren
jakiteko bideragarritasun analisi bat egin dut. Bukatzeko, neuro-fuzzy egi-
tura desberdinak probatu eta alderatu ditut 3 pertsona osasuntsu eta 3 gaixo
hemiplegikorengandik jasotako datuekin.

Deserosotasun analisiaren emaitzek estimulazio asinkronoa sinkronoa baino
erosoagoa dela erakutsi dute. Distribuzio espazialari dagokionez, besaurrean
ez da gune mingarri esanguratsurik aurkitu, baina besoko gune proximale-
nak mingarriagoak direla aurkitu da. Ereduei dagokienez, Recurrent Fuzzy
Neural Network izeneko ereduak eskumutur eta atzamarren flexio/extensio
jokaera aurreikusteko gaitasuna erakutsi du, estimulazio parametroak eta es-
timulazio tokia sarrerako informazio bezala hartuta. Eredu egitura eta ikasketa
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algoritmo desberdinek emaitza desberdinak eman dituzte pertsonaren arabera.
Dena dela, proposatutako ereduek neuroprotesiek eragindako esku kinematika
aurreikusteko gaitasuna erakutsi dute bai pertsona osasuntsuengan bai gaitz
neurologikoak dituzten gaixoengan.

Tesi honetan aurkeztutako deserosotasun analisiaren eta proposatutako
neuro-fuzzy ereduen asmoa gain-azaleko eskurako neuroprotesi berrien di-
seinu eta garapenean laguntzea da. Deserosotasunari buruz sortutako ezagutza
baliogarria da goiko gorputz-adarretara bideraturako neuroprotesi erosoagoak
diseinatzeko. Era berean, proposatutako ereduak eskurako neuroprotesi eta
kontrol teknika berriak diseinatu eta garatzeko lagungarriak dira.



Resumen
Las neuroprótesis son sistemas basados en la estimulación eléctrica fun-

cional (FES por sus siglas en inglés), la cual consiste en aplicar pulsos eléc-
tricos a los nervios periféricos con el objetivo de sustituir funciones motri-
ces/sensoriales perdidas. Las neuroprótesis para miembros superiores o inferio-
res dan asistencia a personas con disfunciones motrices causadas por trastornos
neurológicos. Además, estas neuroprótesis han mostrado una influencia positiva
en la rehabilitación motriz, reforzando la reeducación de funciones perdidas
en pacientes con trastornos neurológicos. Las neuroprótesis superficiales no
son invasivas y son de fácil colocación, por lo que son preferidas para aplica-
ciones terapéuticas. Aun así, su mayor desventaja es su reducida capacidad de
estimular de manera selectiva los nervios objetivo. Este hecho puede causar
sensaciones incómodas y dificultades para conseguir movimientos finos. Esto
puede ser problemático especialmente en aplicaciones de miembro superior, de-
bido a que el antebrazo y la mano están compuestos por numerosos y pequeños
músculos superpuestos. La complejidad de la neuroanatomía del antebrazo y
la mano, su dimensionalidad, las diversas tareas no-cíclicas y la variabilidad
de movimientos entre sujetos, ha dado lugar al diseño de un número reducido
de neuroprótesis orientadas a agarres básicos. La posibilidad de hacer más
selectiva la estimulación mediante los electrodos multi-campo, junto con el
conocimiento sobre la incomodidad y los movimientos que genera la aplicación
de FES en miembro superior, podrían ser base fundamental para el desarrollo
de neuroprótesis de agarre más avanzadas.

En esta tesis se analizan las diferencias existentes en relación a la inco-
modidad generada por dos técnicas de estimulación aplicadas con electrodos
multi-campo en 15 sujetos sanos. Además, se presentan mapas de dolor que
describen la distribución de incomodidad para distintas zonas del miembro
superior obtenidas de las puntuaciones de 11 pacientes que han sufrido un
accidente cerebrovascular. En cuanto a la modelización, se ha llevado a cabo
un estudio de viabilidad para comprobar la posibilidad de utilizar estructuras
neuro-difusas para modelizar los movimientos de la mano inducidos por un
sistema FES basado en electrodos multi-campo. Finalmente, se ha evaluado
y comparado distintas estructuras neuro-difusas que han sido entrenadas con
datos obtenidos de 3 sujetos sanos y 3 pacientes con daño cerebral adquirido.

El análisis de incomodidad ha demostrado que la estimulación asíncrona
es preferida respecto a la síncrona. En cuanto a la distribución espacial de la
incomodidad, no se han encontrado puntos significativamente más dolorosos
que otros en el antebrazo. Por el contrario, los campos proximales del brazo
han resultado ser significativamente más dolorosos que otros campos del brazo.
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Respecto a la modelización, la red neuro-difusa recurrente ha mostrado ser
capaz de predecir la flexión/extensión de la muñeca y los dedos, tomando
los parámetros de estimulación y la zona de aplicación de la estimulación
como información de entrada. Los resultados de las distintas estructuras y
estrategias de aprendizaje han mostrado una gran variabilidad entre pacientes.
En cualquier caso, estos modelos han demostrado su capacidad de aproximar
satisfactoriamente la cinemática de la mano inducida por la aplicación de FES
tanto para sujetos sanos como para sujetos con trastornos neurológicos.

Tanto el análisis de incomodidad como los modelos neuro-difusos pro-
puestos en esta tesis pretenden servir como apoyo para el diseño y desarrollo de
neuroprótesis superficiales avanzadas para la función de agarre. El conocimiento
generado respecto a la incomodidad puede ser utilizado como guía para de-
sarrollar aplicaciones de FES de miembro superior más cómodas. Del mismo
modo, los modelos propuestos en esta tesis pueden ser utilizados para apoyar
el diseño y la validación de sistemas de control avanzados en neuroprótesis
dirigidas a la función de agarre.
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1. Introduction

Neuroprostheses are devices that aim at replacing lost sensory/motor functions
in people suffering from neural disorders. These are based on Functional Elec-
trical Stimulation (FES), which applies electrical pulses in order to artificially
excite target nerve fibers [8, 14]. Neuroprostheses can replace both sensory and
motor functions, e.g. cochlear implants provide the sense of sound, and pace-
makers ensure heart muscle contractions. However, this thesis focuses on their
application for restoring limb motor functions, more specifically, upper-limb
grasping function. People who benefit most from limb function neuroprostheses
include people with neurological disorders such as Spinal Cord Injury (SCI),
stroke, multiple sclerosis (MS) or cerebral palsy (CP) [33, 34, 35, 36]. Although
they differ greatly in the cause of origin and pathology, all present interrupted
pathways in some sensory-motor nerve structures of the nervous system, which
can lead to limb dysfunctions or paralysis [40]. In these cases, neuroprostheses
can provide assistance for functions such as standing, walking, reaching or
grasping [44, 46, 47]. Additionaly, neuroprostheses have been found to provide
therapeutic effects by positively influencing motor recovery [35, 49, 54].

Regarding technology, neuroprostheses include two main components,
which are the stimulator and the electrodes. The stimulator generates the
electrical pulses that the electrodes transmit to the peripheral nerves. There are
three types of neuroprosthesis grouped by invasiveness level [7]: implanted,
percutaneous and surface systems. In implanted systems both the stimulator
and the electrodes are placed under the skin by means of surgery, and the latter
are either attached to the target nerves or close to them [18, 20, 21]. In percuta-
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neous systems the electrodes are placed under the skin by a minimally invasive
technique but wires come out from the skin to connect to an external stimulator
[23]. Finally, surface systems are completely external, where most electrodes
include a hydrogel layer that acts like the interface between the electrode and
the skin and permits attaching them on top of the skin [26]. Implanted systems
permit a selective stimulation of target nerve fibers, therefore, they are usually
preferred for long-term assistive applications. On the contrary, due to the ease of
donning/doffing them, surface systems are preferred for short-term therapeutic
applications. However, the main disadvantage of surface neuroprostheses rely
on their reduced capacity of selectively exciting the target nerve fibers without
acting in neihboring tissues, which can also result in discomfort caused by the
excitation of nerve fibers corresponding to cutaneous receptors. This selectivity
issue is critical in upper-limb applications, specially in grasping applications,
due to the complex neuroanatomy of the forearm and hand, where small muscles
are overlapped and located at different depths [4, 6]. Nevertheless, multi-field
electrodes, which consist on a group of several tiny conductive fields that can
be activated or deactivated independently, have shown selectivity improvements
with respect to conventional surface electrodes [28, 29].

Upper-limb neuroprostheses should face additional challenges when com-
pared to lower-limb applications. Most important of these are the complex
neuroanatomy of the arm, high amount of degrees of freedom (DOF), non-
cyclic type of tasks and inter-subject variability of movements [103, 169]. If
disadvantages inherent to surface FES, such as reduced selectivity and discom-
fort, are added, the design and development of grasping neuroprostheses turns
out to be a complex problem to solve. Therefore, few surface neuroprostheses
for generating hand grasp are available at present. The available ones provide
basic grasps and are not so broadly accepted in clinics because of technological
and functional limitations [48].

Hence, in this thesis we aim at contributing to the grasping neuroprostheses
field by providing an upper-limb discomfort analysis followed by the proposal
of a novel FES model based on intelligent computing techniques. The discom-
fort caused by surface FES can limit the performance of neuroprostheses in
sensitive users. Thus, this analysis aims at finding more comfortable stimulation
techniques and describe spatial distribution of discomfort induced by FES on
different areas of the arm. Like this, new surface neuroprostheses can be built
avoiding potentially painful spots and using more comfortable stimulation tech-
niques. Analogously, the models proposed on this thesis aim at supporting the
design of new surface neuroprostheses and new control techniques. The models
of FES-induced movements presented in this thesis are neuro-fuzzy models that
are able to predict wrist and finger flexion/extension behavior from stimulation
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parameters and application site, and have been trained and tested with data
collected from both healthy and neurologically impaired subjects. The use of
these models could speed up the design of successful grasping neuroprostheses
by allowing to test different simulation techniques without compromising the
safety of neurologically impaired subjects. In brief, the objective of the present
thesis is to provide knowledge and tools for the design and development of
more comfortable and successful neuroprostheses for advanced hand grasps.

This thesis is divided in two main parts, which describe the discomfort
analysis and the FES-induced hand movement modeling respectively. In the
first part, Chapter 2 describes the basic neurophysiology concepts necessary to
understand the underlying processes in the application of FES, from the nerve
cells to the neuroanatomy of the arm. Then, Chapter 3 describes the functioning
principles of FES including a brief description of the main parameters, the
technology and its main applications. Afterwards, Chapter 4 presents the
experiments carried out to compare different stimulation techniques in terms
of discomfort. The materials and methods used in the experiments followed
by the obtained results and a brief discussion are described. Finally, Chapter 5
presents the experiments and pain-maps obtained from neurologically impaired
subjects following a similar structure as the previous chapter.

Regarding the second part, Chapter 6 gives an overview of the background
of FES modeling, where analytic models previously proposed for different
subsystems are presented, and complete models for upper-limb applications are
then briefly described. Chapter 7 describes main concepts of Computational
Intelligence (CI) such as artificial neural networks, fuzzy systems or evolution-
ary algorithms, followed by some of their applications in already proposed FES
systems. Afterwards, Chapter 8 describes the experiments carried out to check
the feasibility of using a neuro-fuzzy approach for modeling FES-induced hand
movements. Then, in Chapter 9 a deeper analysis is presented, where different
neuro-fuzzy structures are tested and compared with data collected from both
healthy and neurologically impaired subjects.

Finally, Chapter 10 aims at summarizing main conclusions that can be
drawn from the presented work, including its limitations and future research
work.





I
2 Phisiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Nervous System
2.2 Anatomy

3 Functional Electrical Stimulation . . . . . . 21
3.1 Principles
3.2 Electrode types
3.3 Applications

4 Discomfort analysis . . . . . . . . . . . . . . . . . . 31
4.1 Materials
4.2 Methods
4.3 Results
4.4 Discussion

5 Pain-maps . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Materials
5.2 Methods
5.3 Results
5.4 Discussion

Part One





2. Phisiology

In this chapter, a brief description of physiological processes needed to un-
derstand the functioning principles of neuroprostheses is given. Basic aspects
of the nervous system are firstly explained, followed by a description of the
anatomical terminology and the neuromuscular anatomy of the arm.

2.1 Nervous System
The human nervous system is one of the most complex biological systems on
Earth, composed by hundreds of billions of neurons that communicate with each
other in a highly structured manner and, as a result, allows us to interact with
our environment. Although some aspects of the most complex neural networks
of the nervous system are still being unraveled, there is great knowledge of
most of the elements and processes that conform it.

The human nervous system is divided in two main parts, which are the
central nervous system (CNS) and the peripheral nervous system (PNS). The
CNS is composed by the brain and the spinal cord, while the peripheral system
includes the spinal, cranial and autonomic nerves and their branches. In this
section we will focus on the PNS as it is the part that concerns us.

2.1.1 Nerve cells
The nervous system is composed of two types of cells: nerve cells (also called
neurons) and glial cells. The latter are not directly involved in information
processing but they play other vital roles such as supporting neurons, producing
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myelin, or removing debris, among others [1]. Nerve cells, on the contrary, are
the main signaling units of the nervous system and can process, generate and
transmit information through electrical and chemical signals.

Nerve cells have different morphological regions, as shown in Figure 2.1,
for specific functions. Main parts of a typical neuron are the following [2]:
• Dendrites: they are the connection regions where the neuron receives

information from other neurons.
• The cell body (or soma): it is the metabolic center of the cell, which

contains the nucleus and other organelles.
• Axon: it is a key component of the neuron, over which information is

transmitted to the terminal parts of the neuron.
• Synaptic terminal: it is the region where the neuron forms a connection

with another neuron and transmits the information by means of a synaptic
transmission.

Figure 2.1: Nerve cell [3].

Nerve cells are electrically excitable, and this is the property that makes
them able to process and transmit information. The information travels along
the nervous system by means of electrical signals, called action potentials (AP).
AP are short electrical spikes or impulses (around 1 ms) elicited in an all-or-
nothing fashion. It is the AP firing rate which determines the stimulus intensity,
not the amplitude of the AP spikes, which are independent of stimulus intensity
(usually around 100 mV) [1, 2].
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The generation of an AP happens in the nerve cells in an all-or-nothing
manner as described next. At rest, neurons maintain a difference in the electrical
potential on either side of the external membrane, which is called the resting
membrane potential (around −65 mV) caused by the unequal distribution of
electrically charged ions, in particular, the positively charged Na+ and K+ ions
and the negatively charged amino acids and proteins on either side of the cell
membrane. This resting potential can be disturbed by a synapse with another
neuron, or by electrochemical receptor terminals, which lead to a reduction
of the negative membrane potential called depolarization that happens at the
axon. If this depolarization reaches a determined membrane potential, called
threshold, then an AP is triggered, as a result of the Na+ and K+ ion flow
through the voltage-sensitive channels in the cell membrane [1, 2]. The shape
of an AP is shown in Figure 2.2.

Figure 2.2: Action Potential.

The triggering of an AP causes a current flowing inwards at the point where
it was generated, which depolarizes adjacent sections of its membrane. If
sufficiently strong, this depolarization provokes a similar AP at the neighboring
membrane areas, propagating the AP along the axon as a wave until reaching
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the synaptic terminals. However, some axons are wrapped by an insulating
myelin sheath that has regular interruptions called nodes of Ranvier and behave
in a different manner. On these axons ion flow does not happen within the
myelinated segments, but only at the nodes of Ranvier. This property makes
current flow through the cytoplasm (external to the cell membrane), which, if
sufficient, will depolarize the subsequent node of Ranvier generating a new AP.
This fact enables a fast and efficient transduction of AP along the axon known
as saltatory conduction. In many types of neurons the dendrites have voltage-
sensitive Ca2+, K+, and Na+ ion channels. Thus, in those cases where AP are
propagated backwards to the dendrites, the passive, electrotonic conduction of
synaptic potentials is modified, which can influence the excitability of involved
neurons [1, 2].

2.1.2 Somatosensory system

The somatosensory system is one of the sensory systems of the PNS, and it
is responsible for informing about the external environment through discrim-
inative touch, proprioception, temperature and pain sensing. The different
receptor organs of the somatosensory system perceive environmental changes
and transform the information into electrical signals, which are carried to the
CNS through an extensive neural network. These neural pathways carrying
information from sensory receptors to the CNS are called afferent nerve fibers,
whereas the neural pathways carrying information in the opposite direction are
called efferent nerve fibers [1].

Sensory receptors present in the somatosensory system can be classified as
cutaneous receptors or proprioceptive receptors. In any case, the location and
the structure of a sensory receptor will determine its specific sensing modality.
Regarding cutaneous receptors, their terminals can be either encapsulated or not,
depending on the receptor type. Figure 2.3 shows an illustration of cutaneous
receptors present in the skin. The skin sensitivity of different areas of the body
differ depending on the amount, distribution and type of cutaneous receptors
present in each of them [1].

Properties of cutaneous receptors are briefly described next [1, 2]:
• Meissner corpuscles: they are found only in glabrous skin (hairless skin)

and they are able to sense flutter and movement.
• Pacinian corpuscles: they are found in subcutaneous tissue beneath the

dermis and they are able to sense vibration or tickle.
• Ruffini corpuscles: they are found deep in the skin and are sensitive to

skin stretch.
• Hair follicles: they are non-encapsulated receptors and are able to sense

hair movements.
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Figure 2.3: Cutaneous receptors [1].

• Merkel disks: they are non-encapsulated receptors found in both hairy
and non-hairy skin, more concretely, in the basal layer of the epidermis.
Merkel disks are considered to be the fine tactile receptors that make us
able to sense pressure, localize tactile stimuli and to perceive the edges
of objects.
• Bare (or free) nerve endings: they are free nerve endings found through-

out the body and different functional types of them can sense nociceptive
or tissue-damaging stimuli (pain), skin cooling, skin warming or touch.
Bare nerve endings are considered to be the somatosensory receptors for
pain, temperature and crude touch.

Should be noted that thermal receptors and nociceptors have small-diameter
axons that are either unmyelinated or thinly myelinated, so AP are propagated
slower in these nerves than in the ones corresponding to the rest of described
receptors [1].

Finally, regarding proprioception, two main receptors should be mentioned:
the Golgi tendon and the muscle spindle. Both are encapsulated proprioceptors,
but their location is different within the muscles as shown in Figure 2.4. The
Golgi tendon organ is located at the junction of muscle and tendon, and monitors
and signals muscle contraction against a force (muscle tension). On the other



12 Chapter 2. Phisiology

hand, the muscle spindle is located in the muscle and monitors and signals
muscle stretch (muscle length) [2].

Figure 2.4: Proprioceptive receptors [2].

2.1.3 Motor system

Finally, the nervous system also enables us to act upon our environment by gen-
erating movements. Although the autonomous system also includes movements,
in this section we will only refer to movements caused by skeletal muscles.

A typical muscle is controlled by hundreds of motor neurons, whose axons
enter the muscle and branch into a number of terminals that form neuromus-
cular synapses with muscle fibers. A single skeletal muscle can consist of
hundreds of thousands of muscle fibers, which are parallel contractile elements
grouped forming fascicles. Those motor neurons that control limb and body
movements are located in the anterior horn of the spinal cord. A motor unit is
then comprised of a motor neuron and the muscle fibers it innervates. Muscle
fibers corresponding to a single motor unit are spread throughout the whole
muscle, like this, when an AP is triggered by a single motor neuron, a weak
uniform contraction over the entire muscle will be produced. Small motor units
are present on muscles that require a fine degree of control, whereas large motor
units are common in muscles that need more strength than fine control [1, 4, 5].
An illustration of the described concepts is shown in Figure 2.5.
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Figure 2.5: Motor Unit [4].

There are three types of muscle fibers, classified upon the speed of response
and their resistance to fatigue. Although most muscles contain fibers of the
three types, fibers corresponding to the same motor unit are all the same type.
Fiber types [1, 5]:

• Type I (slow-twitch): muscle response (contraction and relaxation) fol-
lowing an AP is slow, but they can last long periods of time producing
small forces without fatiguing. Small motor neurons innervate these type
of fibers.
• Type IIA (fast-twitch fatigue-resistant): muscle response is fast, they

produce larger forces than type I fibers but they are not able to maintain
these for very long periods.
• Type IIB (fast-twitch fatigable): muscle response is fast and they produce

large amounts of force that last very little because they fatigue very
quickly. Large motor neurons innervate these types of fibers.

The muscle force is controlled by motor neurons and it is determined by
two main factors: the AP rate and the motor neuron recruitment order. As
described earlier, the AP carry information, and the intensity of the stimulus
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is coded by the rate at which the AP are generated. Therefore, an increase in
the rate of AP fired by a motor neuron results in an increase on the amount of
force of the corresponding motor unit. With low rates only muscle twitches
are achieved, but with higher rates a summation of force is produced because a
new AP is delivered before muscle is relaxed back to baseline. This summation
increases with higher AP rates, but above a certain rate, the muscle has no time
to relax at all between stimuli, and the twitches fuse into a smooth contraction
called tetanic contraction [2, 5]. Figure 2.6 shows the tetany and the summation
effect caused by AP rates.

Figure 2.6: AP rates and force summation. Vertical axis represents muscle
tension. a) lowest AP rates generate single muscle twitches. b) intermediate AP
rates show summation effect. c) high AP rates generate tetanic contractions.

The motor neuron recruitment order is determined by the motor neuron
size principle, which dictates the order at which motor neurons are recruited to
execute a movement. If the input to motor neurons coming from the CNS is
weak because a slight contraction is needed, then only small motor neurons will
be recruited, as these have a smaller membrane surface area and lower synaptic
current is sufficient to generate an AP. As the strength of the signal coming
from the CNS increases, bigger motor neurons will be recruited, causing an
increased number of muscle fiber contractions and increased muscle force. If
we associate the size of the motor neurons with the fiber types they innervate, it
turns out that the slow fatigue-resistant fibers are recruited first, which produce
lower forces. If more muscle force is needed then fast fatigue-resistant fibers
are recruited, and in the very last position, fast fatigable fibers are recruited.



2.2 Anatomy 15

This recruitment order delays fatigue and permits a fine control of the force
produced by muscles [2].

2.2 Anatomy

This section defines some basic anatomical terms and describes briefly the
neuroanatomy of the arm, which will be useful for a better understanding of the
work presented in the following chapters.

2.2.1 Orientation and terminology

The most important reason for using anatomical terminology remains in the
fact that "up/down" or "right/left" terms can become confusing when we are
talking about human body parts.

The anatomical position shown in Figure 2.7 provides a standard frame of
reference for anatomical description and dissection. It consists on a standing
position, with feet flat on the floor, arms at the sides of the trunk and palms,
face and eyes facing forward. Anatomical planes, which are standard imaginary
planes that pass through the body also serve as a guide for anatomical descrip-
tion [5]. Major anatomical planes include sagittal, frontal and transverse planes,
which are shown in Figure 2.7.

Figure 2.7: Anatomical position and anatomical planes [5].
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Finally, directional terms that describe the position of a structure relative to
another can be defined taking the anatomical position and anatomical planes as
a reference [4, 5]:

Anterior Toward the front (in front)
Posterior Toward the back (behind)
Ventral Same as anterior in humans
Dorsal Same as posterior in humans
Superior Toward the head (above)
Inferior Away from the head (below)
Medial Toward the midsagittal plane
Lateral Away from the midsagittal plane
Proximal Closer to the point of origin (closer to the point of attachment to the

body trunk)
Distal Farther from the point of origin (farther from the point of attachment to

the body trunk)
Superficial Toward the body surface
Deep Away from the body surface

2.2.2 Arm neuroanatomy

Musculoskeletal muscles are attached to bones and are responsible of their
movements, which happen at different bone joints or articulations on the body
and can be of different forms depending on the joint structure. In the following
list, the main movements happening at arm and hand joints are briefly described
[5]:

Flexion Movement that decreases the angle of a joint, usually in a sagittal
plane.

Extension Movement that straightens a joint and generally returns a body part
to the anatomical position. Some joints like the wrist can extend over
180o or over the anatomical position, which is also called hyperextension.

Abduction Movement away from the midsagittal line. Abduction of fingers is
to spread them apart.

Adduction Movement toward the midsagittal line or, for fingers, toward the
median axis of the middle digit, in other words, returning to the anatomi-
cal position.

Supination In the case of the forearm, it consists on its rotation to place the
palm facing forward (anatomical position) or upward.

Pronation In the case of the forearm, it consists on its rotation to place the
palm facing backward or downward.

Opposition Movement of the thumb to approach or touch the fingertips.
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The upper limb includes the brachium (arm), antebrachium (forearm), car-
pus (wrist), manus (hand), and digits (fingers) and it is composed by around 50
muscles innervated by different branches of different motor nerves correspond-
ing to the PNS. Figure 2.8 shows the superficial view of the muscles involved
in the upper arm, which enable us to generate some of the previously explained
movements at shoulder and elbow joints [4].

Figure 2.8: Upper arm superficial muscles [4]. a) Anterior view. b) Posterior
view.

Most important muscles of the upper arm include the deltoid, triceps, biceps
and brachialis. Deltoid is responsible for shoulder abduction, flexion and
extension and it is innervated by the axillary nerve. Biceps and brachialis are
prime movers of elbow flexion and they are inervated by the musculocutaneous
nerve. The brachioradialis, which is located on the forearm, also contributes
significantly to elbow flexion. Finally, triceps muscle is the prime mover of
elbow extension and it is innervated by the radial nerve [4].

Regarding forearm, most muscles act at wrist, finger or thumb joints. The
forearm muscles that generate finger and thumb movements are known as the
extrinsic muscles of the hand, which arise in the forearm and insert into the
digits via long tendons crossing the wrist. The intrinsic muscles of the hand,
which arise and insert within the hand, are involved in finer finger and thumb
movements. These are beyond our scope as the surface FES system used for
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the present work is not applied on them. The anterior and posterior views of
different layers of forearm muscles are shown in Figures 2.9 and 2.10 [4].

Figure 2.9: Forearm anterior muscles [4]. a) Superficial view. b) Intermediate
view. c) Deep view.

As it can be seen in the figures, forearm muscles compound a complex
structure of small overlapped muscles located at different depths. Most muscles
located on the anterior part of the forearm generate flexion movements at the
wrist and fingers and are mainly innervated by the median or ulnar nerve.
Conversely, muscles located on the posterior part of the forearm generate
extension movements at the wrist and fingers and are innervated by the radial
nerve and its branches. Although there are forearm muscles that act on the
thumb, the intrinsic thenar muscles are the prime movers of thumb abduction
and opposition, which are innervated by the median or the ulnar nerve [4, 6]. In
Figure 2.11 we can see an illustration of how the radial, median and ulnar nerves
innervate forearm muscles and their corresponding cutaneous innervation areas.
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Figure 2.10: Forearm posterior muscles [4]. a) Superficial view. b) Deep view.

Figure 2.11: Nerves innervating forearm muscles [6]. Colored areas indicate
cutaneous innervation of the corresponding nerve.





3. Functional Electrical Stimulation

Neuromuscular Electrical Stimulation (NMES) consists on applying electrical
pulses to peripheral motor nerve fibers in order to generate muscle contractions.
If these muscle contractions are generated in a coordinated manner aiming
at achieving a specific function, it is called Functional Electrical Stimulation
(FES). Although FES also includes sensory functions, in this chapter only
basics of FES applied to muscles will be described, since sensory FES does not
concern to the thesis topic. Thus, the basic functioning principles are the same
for NMES and FES in this case.

3.1 Principles
In NMES applications, electrical pulses are delivered by means of at least a
pair of electrodes located close to the targeted nerve or nerves. The flow of
ions between the electrodes causes the depolarization of the cell membrane of
nearby neurons, where if the threshold value is exceeded, an AP is triggered. As
described in the previous chapter, this AP is then propagated along the neural
pathway until it reaches the terminal neuromuscular synapses. As a result, the
muscle fibers innervated by the artificially excited neurons will contract [7].

3.1.1 Waveforms
As the aim of NMES is to produce a muscle contraction by artificially exciting
nerves, the electrical signals applied to them should be able to generate AP.
Therefore, the most common electrical signal used in NMES consists of bursts of
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pulses, where each pulse aims to depolarize the nerve cell membrane and elicit
an AP. Voltage-regulated or current-regulated pulses can be applied, although
the voltage-regulated approach presents some disadvantages over the current-
regulated approach: 1) maximum stimulation happens only at the beginning
of each pulse, 2) an increase in the resistance of the conduction path causes
an additional voltage drop, and 3) injected charge and driven current cannot
be controlled. Therefore, current-regulated approach is generally preferred [8].
Regarding pulse waveform, different shapes, number of pulses and monopolar
and biphasic approaches have been tested in terms of performance, discomfort,
charge-efficiency and tissue damage, and so far, biphasic square-shaped pulses
have shown best acceptation [8, 9, 10, 11, 12]. However, there are differences in
terms of performance, tissue damage and electrode corrosion between different
square-shaped approaches, as Figure 3.1 illustrates.

Figure 3.1: Waveform effect on AP initiation, tissue damage and electrode
corrosion [9]."+ + +" meaning best and "- - -" worst.

The first phase of the waveform elicits an initiation of an AP, however,
a compensatory phase is used to reverse the direction of the electrochemical
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processes happening within the skin tissues. As it can be seen in Figure 3.1a, the
absence of this charge balance can lead to a tissue damage and, thus, biphasic
waveforms with a reversal phase are preferred for NMES applications. However,
high current reversal phases may inhibit the AP generation, whereas slow charge
reversal phases can result in skin tissue damage due to the slow reversal of the
electrochemical processes happening within the skin tissues [9].

3.1.2 Stimulation parameters

The square-shaped-pulse waveforms are the most used in NMES and are char-
acterized by three parameters: amplitude, pulse-width and frequency. The
strength of muscle contraction is controlled by manipulating these parameters.

Amplitude determines the height of each pulse (usually defined in current
units - A) and pulse-width determines the duration of each pulse. Both pa-
rameters control the amount of recruited motor units. As the amplitude or
pulse-width increase, the injected electric charge increases, resulting in a larger
electric field and a broader activation region, where more nerve fibers will be
reached. This is represented in Figure 3.2 and it is called spatial summation.
Thus, increasing either of both parameters will result in an increase of muscle
contraction strength [7, 8].

Figure 3.2: Amplitude effect on fiber recruitment [5].
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In Figure 3.3, the amplitude vs. pulse-width relation is shown, where the
curve represents the combination of parameter values that correspond to an AP
initiation. It can be seen that as pulse-width decreases, amplitude needs to be
increased to compensate, and viceversa. However, as pulse-width increases
amplitude only decreases down to a certain minimum value. There is no AP
generation if amplitude is below that value, even with widest pulse-width values.
This amplitude value is called Rheobase, and the time point that belongs to
double of Rheobase value is called Chronaxie time [8, 13] . Thus, in order to be
energy-efficient and charge-efficient, for FES applications pulse-width values
are usually set between 100µs and 300µs.

Figure 3.3: Amplitude vs. Pulse-width, where the curve represents combina-
tions that lead to an AP initiation [9]. Irh=Rheobase intensity, tc=Chronaxie
time.

The last stimulation parameter is the frequency and determines the rate at
which square pulses are delivered. As it was described in the previous chapter,
AP rate has an influence in the generation of muscle force due to the summation
effect. Thus, electric pulse frequency influences the same way. Low frequencies
generate single muscle twitches, whereas high frequencies generate tetanic
contractions [7, 8, 13]. Figure 3.4 shows the effect of different frequencies in
muscle tension. Since FES aims at generating functional movements, smooth
tetanic contractions are preferred, and accordingly frequencies above 20 Hz are
usually applied.

As previously explained, physiological control of muscle contraction force
is carried out through two mechanisms: the AP rate and the motor unit recruit-
ment. This can be mimicked in NMES by controlling the frequency (AP rate)
and pulse-width and amplitude (motor unit recruitment). However, there is a
big difference between naturally and artificially generated muscle contractions,
which is the recruitment order. Actually, the motor unit recruitment order is just
the opposite when applying NMES. This is because in the natural process AP
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Figure 3.4: Frequency effect on muscle tension. Adapted from [8].

are generated at CNS level, whereas in NMES the stimulation is applied to the
PNS at the axon level. In the NMES case, the AP are triggered by electrodes
that generate a potential difference on the extracellular environment between
at least two adjacent nodes of Ranvier. The distance between these nodes of
Ranvier are larger on nerve fibers with larger diameters, hence, it is easier to
generate an AP in larger motor neurons than in smaller ones. These differences
on excitability results in an earlier recruitment of largest motor units. As am-
plitude or pulse-width is increased, the activation region increases and other
smaller nerve fibers are also excited. Therefore, unlike in the natural muscle
contraction process, first, large motor units that correspond to fast-fatigable
motor fibers are recruited, followed by smaller motor units as the stimulation
signal gets stronger. This fact causes a premature fatigue, which is an important
drawback of FES systems, specially in applications where big muscles are
involved. In these cases, fatigue impedes performing FES-induced tasks for
prolonged periods [8, 13, 14].

As the recruitment order is reversed and fast-fatigable muscle fibers are
always recruited when using NMES, high frequencies lead to stronger con-
tractions of those fibers, and as a result fatigue is earlier achieved. In order
to avoid this effect and delay fatigue, in FES applications it is common to set
frequency constant at low values ( 20 Hz to 50 Hz ) and to control muscle force
by modulating amplitude or pulse-width [8, 9, 13, 15].

3.1.3 Electrode configuration and size
This section refers to transcutaneous or surface NMES, which is applied by
electrodes located on the skin. As it has already been explained, the ions flowing
between at least a pair of electrodes cause a membrane depolarization at nerve
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fibers that are under the activation area of the generated electric field. However,
different electrode configurations and size have different effects on performance
or discomfort.

In case of using two electrodes (most typical approach), these are usually
arranged in a monopolar or bipolar configuration. In the monopolar case, one
of the electrodes (active electrode) is placed near the target peripheral nerve,
whereas the other electrode (return electrode) is placed in a remote area over
less excitable tissue, such as tendon or fascia. This configuration works well on
small muscle applications, as it is preferable to excite a small area under the
active electrode without exciting other nerves underneath the return electrode.
On the other hand, in the bipolar case, the return electrode is placed close to the
active electrode over excitable tissue. The bipolar configuration is often used in
applications involving big muscles, as the fact of having two electrodes over
the targeted muscle may enhance the stimulation and produce higher forces.
Distance between both electrodes affects performance of stimulation as well,
since distance gets smaller the current tends to pass through the most superficial
layers of the skin because they are less resistive. On the contrary, if distance
between them increases then current can spread deeper on the skin layer [7, 8,
14].

Regarding the electrode size, it affects mainly the current density, which is
the amount of current flow per unit area. A low current density implies a small
amount of ion movement in a particular area of the tissue, and it may not be
sufficient for membrane depolarization. If same current is passed through a
big electrode and a small electrode, the latter one will imply a higher current
density, which is desirable near target nerve fibers. On the other hand, a big
electrode will tend to distribute the current into a broader area, resulting in
a lower current density. Thereby, small electrodes are desirable to be placed
close to the target nerves because the excitation is more localized and lower
current is needed to elicit an AP. However, deep target nerves require higher
amplitudes, which in the case of very small electrodes can result in high current
densities that produce discomfort. Conversely, large electrodes are preferable
in those areas where no selective excitation is desired or target nerves are deep
from the surface, because the current distributes over a broader area. Therefore,
electrode size balance should be found for every FES application. [16, 17].

3.2 Electrode types

The electrical pulses are generated by a stimulator, which usually includes
waveform and parameter control options. Then, via wires, electrical pulses are
transmitted to the electrodes, being themselves responsible of transmitting these
to the peripheral nerves. Hence, the main objective of the electrodes is to deliver
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electrical pulses to target nerve fibers minimally exciting additional nerve fibers
and without damaging any tissue at the stimulation site. Electrode types can
be classified by the level of invasiveness in three main groups: implanted,
percutaneous and transcutaneous (surface) electrodes [7, 14].

3.2.1 Implanted electrodes
Implanted electrodes are placed attached or close to the nerves and they are
connected by leads under the skin to an implanted stimulator. Such stimulator
is usually controlled by an external device by means of a radio-frequency link.
There are many types of implanted electrodes, but main electrodes include:
epimysial electrodes, which are implanted on the muscle surface [18]; intramus-
cular electrodes, which are placed inside the muscle [19]; epineural electrodes,
which are placed close to the nerve [20]; and cuff electrodes, which wrap around
the nerve [21].

Implanted electrodes are invasive because they require surgery for place-
ment or removal. Some have shown success in long-term use and chronic
applications [22].

3.2.2 Percutaneous electrodes
Percutaneous electrodes are inserted into the muscles (intramuscular) through
the skin by means of a minimum invasive technique using a hypodermic needle
[23]. Although they are less invasive than implanted electrodes, common elec-
trode lead fracture or infection risks make them less preferred than implanted
electrodes for chronic applications [24]. Nevertheless, they are commonly used
as precursors for fully implanted systems [25].

3.2.3 Transcutaneous (surface) electrodes
Transcutaneous electrodes are placed on the skin surface and so, they are non-
invasive. These are usually placed over motor points of the target muscles,
which are defined as stimulation sites that produce an isolated contraction of the
target muscle at the lowest stimulation level. Usually, a motor point corresponds
to an area on the skin where a nerve branch passes most superficial and so,
it is easier to excite with lower stimulation levels. The main advantages of
surface electrodes are that they are very simple to don/doff, they can be reused,
they are available in many shapes and sizes by diverse manufacturers, and that
their prize is very low. This make them preferred in clinics for short-term and
therapeutic applications [26].

Different materials have been used for transcutaneous electrodes in the
last decades, such as metal electrodes covered by a spongy tissue or rubber
electrodes. However, the self-adhesive hydrogel electrodes have shown to be
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the ones producing less discomfort and they are easier to attach/detach [16,
26]. Therefore, except for special applications almost exclusively self-adhesive
hydrogel electrodes are used for transcutaneous electrical stimulation. These
electrodes use a gel to contact a conductive member with the subject’s skin. The
electrode is built in a multi-layer configuration with first hydrogel layer acting
as a skin interface and the second hydrogel layer connecting the substrate with
the previous layer [26].

Although widely used, still surface electrodes face some disadvantages
compared to percutaneous or implanted electrodes. One of them is that afferent
fibers corresponding to cutaneous receptors are usually excited together with
motor nerve fibers when surface stimulation is applied, which can cause dis-
comfort to the user. Indeed, the discomfort can become worse due to the skin
inhomogeneities or electrode edge effect, which can cause painful localized
high current densities. In order to avoid this happening, high resistivity hydro-
gels are suggested [27]. Yet, the main problem of surface electrodes lies in the
selectivity. This is the capacity of exciting the targeted nerve fibers without
exciting the surrounding ones that can result in unwanted muscle contractions.
As electrodes are attached to the skin, some deep nerves become almost inac-
cessible, and on the contrary, superficial nerves located next to the electrode
are too easily excited. This is an issue specially in applications that involve the
stimulation of small muscles. Besides, high resistive skins and thick fat layers
under the skin may also force to apply higher amplitudes to reach deeper nerves,
compromising comfort and selectivity [17].

Nevertheless, research on surface multi-field electrodes seeks to overcome
with some of these disadvantages. A multi-field electrode consists on a group
of several tiny conductive fields, which can be activated or deactivated indepen-
dently, distributed along a big area. This configuration adds a new dimension to
surface electrical stimulation methods, as it brings new stimulation possibilities
and combinations that should be tested. So far, surface multi-field electrodes
have shown selectivity improvements [28, 29] and delay of fatigue effect [30]
with respect to pairs of conventional single electrodes. Moreover, the tedious
work of manual search of motor points can be avoided by automated search
implemented with multi-field electrodes [31, 32].

3.3 Applications

Although FES has many clinical applications, only the ones involving limb
functions and its benefits are briefly described, as other applications are not
relevant for understanding the current work.
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3.3.1 Neurological disorders

Main benefits of FES have been found within the neurorehabilitation field,
where the target population includes patients suffering from neural disorders
such as spinal cord injury (SCI), stroke, multiple sclerosis (MS) or cerebral
palsy (CP) among others [33, 34, 35, 36].

Although the mentioned diseases differ greatly in the cause of origin and
pathology, they all present interrupted pathways in some sensory-motor nerve
structures of the nervous system, which can lead to motor dysfunctions. In
any case, disorders with the cause of origin either at the brain (stroke and
CP), spinal cord (SCI) or nerve (MS), result in interrupted neural pathways,
causing weakness or paralysis of limbs. Moreover, long-periods of inactivation
of muscles lead to loss of muscle mass and strength, often worsening the
symptoms [37, 38, 39, 40]. Another frequent symptom found in patients
suffering from neurological disorders is spasticity. Spasticity is associated with
an increase in muscle tone and exaggerated tendon reflexes. It is defined as a
velocity-dependent resistance of the muscle to stretch caused by the activation
of tonic stretch reflexes. Predominantly, anti-gravity muscles are affected (arm
flexors or leg extensors) [40].

Consequently, movement patterns of patients suffering from neural disor-
ders are different to the healthy ones, and they are different for each disease
and pathology. In the stroke case, patients usually present a hemiparesia or
hemiplegia (partial paralysis of muscles half side of the body), combined with
spasticity on flexors of the affected limb. This results in a limb weakness, loss
of volitional control and muscle spasticity known as upper motor neuron syn-
drome. If the spasticity is severe it can cause deformities in resting position of
the limbs. In the upper limb case, it commonly consists of shoulder adduction
and internal rotation, forearm pronation, and elbow, wrist, digit and thumb
flexion [39, 41]. In order to compensate functional disabilities, movement
patterns are modified, e.g., in the case stroke patients performing reaching tasks,
an increased involvement of the trunk is appreciated due to the inability of
properly flexing the shoulder or/and extending the elbow [42].

It is important to point out that independent of the pathology, in order to
apply FES successfully, subjects should have excitable peripheral nerves and
healthy neuromuscular synapses at stimulation sites, i.e. intact lower motor
neurons. This is inherent to FES working principles described in previous
sections.

3.3.2 Assistive and therapeutic effects

Some of the disorders mentioned above can be improved or reduced by the
application of FES. Actually, in its origin FES applications aimed at substituting
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lost motor functions on people with limb dysfunctions or paralysis caused by
neural disorders. These complete FES systems that act as a bridge to damaged
neural pathways and substitute lost motor functions are called neuroprostheses.
Main neuroprostheses developed for lower limbs include drop-foot (inability
of making voluntary dorsiflexion of the foot) correction devices for stroke
patients [43, 44] and standing and walking neuroprostheses for incomplete SCI
patients (partial paralysis of lower limbs) [45, 46]. Regarding upper-limb, fewer
neuroprostheses are available for generating grasping function and these are not
so broadly accepted, specially systems based on surface electrodes, because of
technological and functional limitations [47, 48].

In addition to providing assistance for achieving certain motor functions,
neuroprostheses have been found to provide therapeutic effects in different
studies, where motor function has been improved in incomplete SCI and stroke
patients after following FES based therapy [35, 49, 50, 51, 52, 53, 54]. Not
only movement patterns can improve with FES, but some studies found that
spasticity can also improve with FES application [55, 56]. Besides, different
studies have shown diverse additional benefits of applying FES such as muscle
strengthening, increase of muscle mass, improvement of edemas, increase of
bone-mass or increase of blood-flow, among others [33, 57]. Although not all
patients are able to rehabilitate to the same extent, some patients may recover
enough function after following FES based therapy, and may not need to use an
assistive neuroprosthesis any longer. For this reason, transcutaneous or surface
FES systems are highly recommended over implanted systems for therapeutic
applications in neurorehabilitation.



4. Discomfort analysis

The main motivation to carry out these experiments was the lack of studies
regarding discomfort caused by different stimulation techniques that new multi-
field electrodes make possible. Although asynchronous stimulation has been
mainly used in latest research with multi-field electrodes [30, 32], synchronous
stimulation is an alternative stimulation method that can be also applied with
multi-field electrodes. The reason why these experiments were focused on
sensation was that surface FES activates afferent nerve fibers corresponding to
cutaneous receptors that can result in discomfort, limiting performance and use
of FES in some cases. Therefore, different stimulation techniques should be
tested and compared in order to find methods that can ensure good performance
producing as low discomfort as possible. The goal of this study was to provide
new knowledge regarding discomfort with two different stimulation methods.

4.1 Materials
The materials used in these experiments consisted of a FES system and a custom-
built set-up for measuring wrist torque. Both systems were fully controlled by
a custom-made Graphical User Interface (GUI) built on Matlab Software.

4.1.1 FES system
The FES device that we used in these experiments was the IntFES stimulator
device shown in Figure 4.1, which was designed for functional electrical therapy
(FET) [58]. It was a single channel electronic stimulator that provided current-
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regulated biphasic stimulation. It could provide an output current ranging
from 0 mA to 50 mA, an output frequency ranging from 1 Hz to 50 Hz, and an
output pulse-width ranging from 50 µs to 1000 µs. The setup of the stimulation
parameters was carried out remotely via Bluetooth.

Figure 4.1: IntFES stimulator [58] and multi-field electrode[59] .

Although it only had one channel, the IntFES stimulator was designed to
control up to two 16-field IntFES electrodes (32 fields in total). The IntFES
electrodes were multi-field electrodes divided into 16 fields that could be acti-
vated independently and with different current amplitudes. For our experiments
we used a single 16 field electrode matrix specially designed for the dorsal
forearm stimulation [59] shown in Figure 4.1. The hydrogel of the electrode was
the AG803 type from AmGel Technologies, which had a volume resistivity of
15000 ohm-cm minimum and 30000 ohm-cm maximum. The return electrode
was a conventional single hydrogel electrode of size 50x50 mm.

4.1.2 Wrist torque measuring set-up

Measuring the hand dynamics or kinematics could be done in several ways, but
we decided to go for a dynamic approach by measuring wrist torque because
our main focus was not movements but discomfort, and because isometric
wrist-torque measurements permits comparing performance between methods
and among individuals easier than with other approaches.

For these experiments a custom wrist torque measuring set-up was designed
and built. The set up was based on a JR3 force sensor 45E15A-I63-AF, with
a load rating of 1000 N and 6 Degrees Of Freedom (DOF), which provided
force and torque measurements on three axes (X,Y,Z). The X and Y axes were
in the plane of the sensor body, and the Z axis perpendicular to the X and Y
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axes. The reference point for all load data was the geometric center of the
sensor. The analog outputs produced by the force sensor were collected by a
National Instrument NI-USB 6218 Data Acquisition Card and connected via
Universal Serial Bus (USB) to the computer. Our solution consisted of an
aluminum structure where the force sensor was integrated as shown in Figure
4.2. The force sensor was screw-mounted between two aluminum plates that
were supported at a certain height from the base. The aluminum plate on
the front had holes distributed along a circumference of 10 cm radius, with
a separation of 10 ◦ between each hole from −50◦ to 90◦. The aim of these
holes was to hold a bar that fixed the position where the isometric torque
measurement was carried out. On top of this bar, located in any of the holes of
the aluminum plate, a plastic plate was supported, where the hand rested. The
torque measured in Z edge was directly the torque generated on the wrist on
an isometric contraction in a determined position. In order to achieve a proper
alignment with the Z axis of the sensor, the components of the structure that
supported the forearm and hand could be adapted to different hand and arm
sizes.

Figure 4.2: Frontal and lateral views of the custom-built wrist torque measuring
set-up. Arrows indicate the direction of the corresponding torques.

The hand was placed facing down fixed to the plastic plates with velcro
straps, so this way torque in both directions could be measured. If the force
was applied to the bar that was located underneath the plastic plate, then the
measured torque corresponded to the sum of both torque generated by gravity
forces and torque generated in the wrist by flexor muscles (torques in same
direction). On the contrary, if the force was applied to the bar that was located
on top of the plate, then the measured torque represented the sum of both the
torque generated on the wrist by muscle extensors and torque generated by
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gravity forces (torques in opposite direction). The direction of the mentioned
torques are illustrated in Figure 4.2.

To validate the whole set-up, error estimation and gage repeatability and
reproducibility (Gage R&R) study were carried out [60]. Torques produced
around the Z axis by a 256 gr. weight located on the plastic plate were measured
for the full range (−50◦ to 90◦) several times. Then, obtained measurements
were compared to theoretical torque at each position as shown in Figure 4.3.
The maximum Mean Square Error (MSE) value found was of 0.0001 Nm and
corresponded to the -20 ◦ position.

Figure 4.3: Error of torque-measuring set-up. Pink line represents theoretical
torques generated by a 256 gr. weight at different positions and rest of lines
represent measurement values.

Afterwards, the Gage R&R analysis was applied to the data with Minitab
statistical software. Results shown in Figure 4.4 proved that the set-up was
able to differentiate slight torque differences caused by position changes. First
graph shows that the variability in measurements across different positions was
much bigger (98,97%) than variability caused by repeatability issues (14,34%).
Second graph shows that deviations in all positions were within the control
limits and the average standard deviation for all data was 0.0087 Nm. The third
graph shows all the measurements with data distributed in boxplots for different
positions and mean values for each position. Finally, the fourth graph presents
measurements and control limits, where it is shown that variations between
means in different positions are higher than tolerance limits. Summing up, the
results showed that the precision and repeatability of the wrist torque-sensor set
up was appropriate to carry out the following experiments.
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Figure 4.4: Gage R&R results.

4.2 Methods

In these experiments, discomfort caused by two different stimulation meth-
ods applied with multi-field electrodes on 15 healthy subjects was compared
and analyzed. The experiments were carried out in TECNALIA and all the
participants signed an informed consent.

4.2.1 Stimulation methods

Two stimulation methods were compared: synchronous stimulation and asyn-
chronous stimulation.

Synchronous stimulation consists of the simultaneous activation of fields as
shown in Figure 4.5. The current is distributed among all the activated fields at
the same time, hence, the activated fields act like a big single electrode covering
the area of the active fields [61].

Asynchronous activation method activates different electrode fields one
right after the other as shown in Figure 4.6. Some research suggest that superpo-
sition principle is applicable to asynchronous stimulation as far as time between
pulses of different fields is small enough [32]. This means that asynchronous
activation of multiple fields would produce a movement equal to the sum of the
movements produced by each single field.
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Figure 4.5: Synchronous stimulation.

Figure 4.6: Asynchronous stimulation.

In both cases, charge-balanced biphasic stimulation was used, with the
frequency fixed at 40 Hz and the pulse-width fixed at 200 µs.

4.2.2 Experiment design

The aim of the experiments was to see if any difference in sensation could be
perceived between asynchronous and synchronous stimulation when applied
to a population of 15 healthy subjects. However, because the objective of
FES is to produce functional movements, a balance between discomfort and
performance should be found. It would be useless to find a stimulation method
that does not cause discomfort if it does not produce any torque. Therefore,
although the main objective was to compare discomfort, we decided to measure
isometric torque (torque generated at constant muscle length or no movement)
generated by wrist extensors as well as to see if there were evident differences
in performance between both methods. Isometric torque was measured when a
target bar located at 45 ◦ of extension was achieved. Like this, the wrist was
forced to make a little excursion (from 0◦ to 45◦) before starting the isometric
contraction. At this position we could measure isometric wrist torque with less
gravitational influence, but also visually detect evident differences during the
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short wrist extension excursion. An example of the hand at rest (0◦) and the
hand producing isometric forces at the target position (45◦) is shown in Figure
4.7.

Figure 4.7: Experiment set-up target position. Hand at rest and hand reaching
the target position.

Regarding discomfort, a simplified version of the Transcutaneous Electrical
Stimulation Comfort Questionnaire [16] rating method was designed. It con-
sisted in two descriptors, which were deep and superficial discomfort. These
could be rated in a scale from 1 to 5, where 1 meant no discomfort and 5 meant
pain.

Finally, we thought that the number of active fields or the location of these
could also affect discomfort, since current density and activation regions of
the skin change. Therefore, we decided to test the effect on discomfort of 4
different cases: two neighbor fields activated, three neighbor fields activated,
two distant fields activated and three distant fields activated. Distant fields were
defined as fields which had at least one other field between them, as it is shown
in Figure 4.8. Thus, four cases were tested with each of the two stimulation
methods. These cases were randomly ordered for each subject so fatigue or
getting used to the FES feeling would not affect the results.

4.2.3 Adaptation sessions
During two days before the experiments, adaptation sessions were carried out
with each subject. These sessions consisted in two sessions of 20 minutes of
interrupted stimulation where amplitude was increased gradually. The aim
of the adaptation sessions was to get subjects familiarized with sensations
produced by FES before the main session was performed.

4.2.4 Main session
After the adaptation sessions a main session was carried out. This lasted about
1h and 30 minutes including donning, calibration, tests and doffing. All the
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Figure 4.8: Example of neighbor and distant cases. From left to right: 2
neighbor fields, 3 neighbor fields, 2 distant fields and 3 distant fields.

tests were carried out with a biphasic compensated pulse at 40 Hz frequency
and 200 µs pulse width.

First stage was donning, which consisted on putting the multi-field electrode
covering the extensor muscles of the forearm, the return electrode on the wrist,
correctly sitting the subject on the chair and aligning the wrist with the force
sensor as shown in Figure 4.9. In addition, elastic bands were wrapped around
the forearm to ensure good skin-electrode contact. Subjects were asked to
remain seated and to leave their arm relaxed throughout the experiment.

Figure 4.9: Discomfort analysis experiment set-up.

Once donning was done, a manual calibration stage was carried out. The
aim of this stage was to define the reference amplitude and optimum fields
for each of the four cases described previously. For this, the amplitude was
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increased gradually until the target of 45 ◦ wrist extension was achieved with a
single field (randomly selected from the bottom row of the electrode, located
proximally on the forearm). After the target was reached, each of the 16 fields
was activated with this amplitude. Then four possible configurations for the
four cases were defined, selecting those fields that reached the target producing
higher torque. Finally, the reference amplitude was defined as the amplitude
with which the subject reached the target when activating independently each
of the selected fields. Sometimes the initial amplitude had to be increased to
reach the target with each of the selected fields for the four cases.

Once the reference amplitude and the fields for the four cases were selected,
the tests were carried out. In this stage, comparison between methods was
performed and the following sequence was followed for each of the four cases.
First of all, the selected fields were separately activated with the reference
amplitude defined in the calibration stage. The reference torque was then
defined as the maximum torque reached by any of the separately activated
fields. The reference torque was used as a target torque and for normalizing
the torque of each subject and each case. Once the reference torque was
obtained, previously selected fields were activated with one of the methods in
random order. Initially low amplitude was used, 6 mA lower than the reference
amplitude, and it was increased 1 mA at a time. Each of the stimulation periods
consisted of a starting ramp of 500 ms, 6 s of stimulation and a descending
ramp of 500 ms, followed by 7 s of rest before next stimulation period started.
When 45◦ extension was reached and reference torque was reached or exceeded,
the stimulation was stopped. At this point, the subjects were asked to rate
their discomfort. If any subject felt high discomfort or pain and did not want
to go higher in amplitude before the target was reached we considered it an
unsuccessful test, but the subject was equally asked to rate his feeling. These
last steps (starting at 6 mA) were repeated with the remaining method and then
the whole sequence was repeated with each of the four cases.

When all the tests were finished we proceeded to loosen the straps and
remove the electrodes from the subject’s forearm.

4.3 Results
4.3.1 Success rates
We considered that a test was successful if the 45◦ extension was achieved
and the reference torque was exceeded. If the subject felt pain or a very
uncomfortable feeling and decided to stop increasing amplitude before he
reached the target, we considered it an unsuccessful test. In Figure 4.10 we can
see the amount of people that achieved a success with each method and for each
case.
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Figure 4.10: Success rates for different cases.

14 subjects reached the goal with asynchronous method independent of the
case, whereas synchronous method showed differences depending on the case,
resulting worse in distant field cases, where the amount of subjects that achieved
a success was smaller. 5 subjects with two distant fields and 4 subjects with
three distant fields did not achieve the target when fields were synchronously
activated. It is important to point out that the subjects that failed to succeed
with synchronous stimulation described high discomfort or pain at the wrist,
where the return electrode was located. It also has to be mentioned that one
of the 15 subjects turned out to be very sensitive to electrical stimulation and
only reached the target in one case, which was synchronous activation of three
neighbor fields.

4.3.2 Discomfort

As mentioned before, discomfort was separated into two descriptors: superficial
and deep discomfort. Each of them was rated from 1 to 5 either when the subject
reached the target or when the subject wanted to stop increasing amplitude due
to a very uncomfortable feeling. Figure 4.11 shows medians and interquartiles
for each method, each case and each descriptor. Differences in the median
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values are seen for asynchronous and synchronous methods, especially in
superficial discomfort ratings for neighbor field cases and deep discomfort
ratings for distant field cases. However, the variability in the discomfort ratings
was considerably high due to the large inter-subject variability in sensitivity to
electrical stimulation.

Figure 4.11: Discomfort median and interquartiles.

Aditionally, paired Wilcoxon statistical tests were carried out. First, each of
the four cases was separately analyzed but no significant differences were found
due to the small size of the samples. Thus, these four cases were grouped into
two cases, which were neighbor field and distant field cases. Deep and superfi-
cial discomfort rating differences were again analyzed by Wilcoxon paired tests.
Results, summarized in Table 4.1, only showed significant difference between
synchronous and asynchronous methods for deep discomfort descriptor and
for the distant field cases. No significant differences were found in superficial
discomfort or in deep discomfort in neighbor field cases between asynchronous
and synchronous methods.
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Table 4.1: Wilcoxon paired test results

Neighbor fields Distant fields

Superficial discomfort p=0.1677 p=0.1155
Deep discomfort p=0.4644 p=0.0156*

*
Significant differences (p<0.05) between synchronous and asynchronous
methods were found in this case

4.4 Discussion
The results showed that synchronous stimulation produced significantly higher
deep discomfort than asynchronous stimulation when distant fields were acti-
vated with the proposed multi-field electrode configuration. Indeed, subjects
pointed out that they felt deep discomfort around the wrist, where the return
electrode was located. This discomfort caused by synchronous stimulation lim-
ited its effectiveness in distant fields cases, as 5 people with two and 4 people
with three activated fields failed to succeed reaching the target due to pain or
big discomfort. This effect could be caused by higher current densities present
on the return electrode with synchronous stimulation than with asynchronous
stimulation, which could result in the activation of a larger amount of afferent
fibers corresponding to deep cutaneous receptors. However, this effect was not a
problem in neighbor field cases, since lower amplitudes were needed in general
to achieve the target and therefore the current density was smaller. This last
fact supports the suggested hypothesis that stated that synchronously activated
neighbor fields might act like a bigger electrode.

Regarding activation of neighboring fields, no significant differences were
found between both methods in terms of discomfort. In fact, asynchronous
stimulation showed stable discomfort rates and successful attempts for all the
cases. Thus, considering that a stimulation method should give the possibility
of successfully using the widest variety of field activation patterns as possi-
ble, asynchronous stimulation has shown to be the best option between both
methods in terms of discomfort. Taking into account the presented results,
and the previously reported benefits on fatigue and selectivity of asynchronous
stimulation [29, 30], we conclude that it is the best method tested so far with
multi-field electrodes. Therefore, for the rest of the experiments presented in
this work, asynchronous stimulation has been used.

The most significant results of the work described in this chapter were pre-
sented in the 18th Annual Conference of the International Functional Electrical
Stimulation Society [62].
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Tactile sensitivity of the upper limb has been intensively studied, determining
the tactile spatial acuity of different sites of the arm and the effect of different
factors influencing it [63, 64, 65, 66]. Sensitivity to electrotactile stimulus has
also been studied, showing the effect of different stimulation parameters and
stimulation sites of the body [67, 68]. However, there is a lack of studies focused
on spatial distribution of pain or discomfort caused by transcutaneous FES on
the arm, which is essential for designing more comfortable neuroprostheses for
this part of the body. Therefore, this study aimed at creating pilot pain-maps,
defined as graphical representations of pain ratings of different sites of the arm.
These could point out painful spots on the arm that should be avoided or less
painful spots that should be preferred for applying FES, which could be used as
a reference for the design of more comfortable neuroprostheses.

5.1 Materials

The FES device that we used in these experiments was the IntFESV2 device
shown in Figure 5.1, a second version of the IntFES stimulator described in
the previous chapter [58]. As the previous version, it was a single channel
electronic stimulator that provided current-regulated biphasic stimulation. Sim-
ilarly, the output ranges went from 0 mA to 50 mA for the amplitude, from
1 Hz to 400 Hz for the frequency, and from 50 µs to 1000 µs for the pulse-width.
This new version was provided with an embedded touchscreen that permitted
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controlling all the stimulation parameters locally. Additionally, it could be
remotely controlled via Bluetooth and CAN communication.

Figure 5.1: IntFESV2 stimulator.

The IntFESV2 stimulator was designed to control up to four 16-field IntFES
electrodes (64 fields in total), and not only amplitude, but pulse-width of each
field could also be controlled independently on this new version. For these
experiments a regular matrix, shown in Figure 5.2, was designed to be used in
four areas on the upper limb: anterior forearm, posterior forearm, anterior upper-
arm and posterior upper-arm. The multi-field electrode size and configuration
were designed in order to: a) be flexible to adapt to different arm sizes and
shapes and b) cover the maximum area to obtain complete pain maps. A
common return electrode of size 50x50mm was used, and the size of each field
was 30x15mm.

Figure 5.2: IntFES multi-field electrode matrix.
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5.2 Methods

The objective of this study was to check if there was a common pattern within
subjects regarding discomfort in different areas of the upper limb. Subjects suf-
fering from neural disorders such as stroke usually suffer from sensory deficits
and their discomfort or pain thresholds are different to healthy subjects [39].
Therefore, the experiments were carried out with stroke subjects. The study was
carried out in collaboration with LAMBECOM lab at Universidad Rey Juan
Carlos. The protocol was approved by the ethical committee of Universidad
Rey Juan Carlos and all the participants signed an informed consent.

5.2.1 Subjects

12 chronic stroke patients were recruited for these experiments. However, before
starting the program one of them had to leave because of health issues unrelated
to this study, so in the end the experiments were carried out with 11 chronic
stroke patients. The subject group included 10 males and one female, whose
mean age was 62.73 +/-6.78 years. Time from injury was over one year for
all of them and none of them suffered from aphasia, so they had the cognitive
ability to understand, follow and participate in the study without any difficulties.
They were evaluated with the upper extremity Fugl-Meyer assessment [69, 70]
before starting the study. Fugl-Meyer overall scores were 65.82 +/-17.98 (out
of 126) and scores corresponding to the sensation section were 8.64 +/-3.32
(out of 12).

5.2.2 Experiment design

Unlike other sensitivity studies [63, 64, 66], we wanted to build discomfort maps
useful for transcutaneous neuroprostheses design. Therefore, it was important
to build these discomfort maps based somehow on the motor response to
the application of electrical stimulation. For this reason, the procedure was
designed to obtain pain ratings related to the motor threshold (MT), which
is the minimum amplitude where a motor response is perceived. As it was
previously explained, higher amplitudes lead to an increased current density
and the recruitment of a bigger amount of efferent and afferent nerve fibers,
usually resulting in higher discomfort. Thus, rating pain at MT values would
result in pain maps that pointed out painful spots that could be due to a high
amount of superficial afferent nerve fibers or due to a high MT value. On the
contrary, less painful spots could be the result of less amount of superficial
afferent nerves or lower MT values. In any case, the resulting pain maps would
show spots that should be avoided or preferred in FES applications.
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5.2.3 Adaptation sessions

The aim of these sessions was to make the subjects familiar to the feeling of
transcutaneous electrical stimulation before carrying out the main session. Stan-
dard commercial neuromuscular stimulators (Cefar Rehab X2) were delivered
to patients and they were instructed to run the program twice a day in the four
areas (posterior/anterior forearm, posterior/anterior upper-arm) during the week
before the main session. Patients only needed to place the standard single
electrodes on top of the four different areas, adjust the amplitudes and run the
predefined program of 30 minutes of duration described next:

- Phase 1: frequency 8 Hz, pulse-width 200 µs, initial ramp 0.5 s, low am-
plitude (above sensory threshold but below motor threshold), 7.5 s stimulation
and 7.5 s rest periods. (5 minutes)

- Phase 2: frequency 50 Hz, pulse-width 200 µs, initial ramp 0.5 s, high
amplitude (as high as tolerated), 7.5 s stimulation and 7.5 s rest periods. (20
minutes)

- Phase 3: frequency 3 Hz, pulse-width 200 µs, initial ramp 0.5 s, low am-
plitude (above sensory threshold but below motor threshold), 7.5 s stimulation
and 7.5 s rest periods. (5 minutes)

5.2.4 Main session

This session was held in the LAMBECOM lab. Parameters during the whole
session were set to 25 Hz frequency and 200 µs pulse-width. The whole session
took around 90 minutes.

First of all, the subject was seated in a comfortable chair resting his forearm
on top of a table. Then, the matrix multi-field electrodes and the return elec-
trodes were placed over the four different areas of his affected arm, which were
posterior forearm, anterior forearm, posterior upper-arm and anterior upper-arm,
with medial and lateral epycondiles taken as a reference as shown in Figure 5.3.
Next, the following procedure was carried out for each of the 16 fields on each
arm area:

- Randomly select a field and set it with 0 mA.
- Increase amplitude in steps of 1 mA until visually perceiving a weak

contraction (MT).
- If no contraction was obtained at 25 mA or the subject could not tolerate

an amplitude of two times MT, next steps were skipped.
- Apply an amplitude of double MT and stimulate during 5 s.
- Ask the subject to rate the felt pain on a visual analog scale (VAS) [71,

72].
- Note down the MT amplitude and the rated pain for the selected field.
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Figure 5.3: Matrix multi-field position. a) anterior forearm, b) posterior forearm,
c) anterior upper-arm and d) posterior upper-arm.

5.3 Results

5.3.1 Individual pain-maps

After collecting all pain ratings, data of each patient and each of the four
stimulation areas were normalized. To enable comparing and visualizing pain
ratings of patients with left and right affected sides, data from patients with left
arm affected was mirrored, so all the graphs shown in this section represent
data for the right arm. Individual pain ratings of the 11 patients are shown in
Figures 5.4, 5.5, 5.6 and 5.7, where each graph represents the area covered by
the multi-field electrodes as shown in Figure 5.3. The color of each square
represents the pain rating corresponding to the field on that position. Darker
colors (red) represent fields that got higher pain ratings, and accordingly, lighter
colors (white-yellow) represent less painful fields. As explained in the previous
section, if no MT was achieved for a specific field or its amplitude value
was considered too high to double it and be tolerated by the patient, then the
amplitude was not doubled and pain rating was not collected. In order to remark
this fact, the pain rating was assumed to be as high as the highest value given by
the patient in any field of that area. If one patient presented more than 4 cases
like this in a certain area of the arm, the whole dataset for that patient in this
area was discarded.

5.3.2 Average pain-maps

After analyzing individual data, averages were obtained for each of the fields
of the four areas. These are shown in Figures 5.8, 5.9, 5.10 and 5.11 where
each graph represents the area covered by the multi-field electrodes. As before,
darker colours (red) represent fields that got higher pain ratings, and accordingly,
lighter colours (white-yellow) represent less painful fields.
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Figure 5.4: Normalized pain ratings of 11 patients for the anterior forearm.
Each square represents one field of the multi-field electrode when placed as
shown in Figure 5.3 a). The empty graph corresponds to a subject where MT
amplitude was not doubled for discomfort reasons in more than 4 fields.

Figure 5.5: Normalized pain ratings of 11 patients for the posterior forearm.
Each square represents one field of the multi-field electrode when placed as
shown in Figure 5.3 b).
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Figure 5.6: Normalized pain ratings of 11 patients for the anterior upper-arm.
Each square represents one field of the multi-field electrode when placed as
shown in Figure 5.3 c). The empty graph corresponds to a subject where MT
amplitude was not doubled for discomfort reasons in more than 4 fields.

Figure 5.7: Normalized pain ratings of 11 patients for the posterior upper-arm.
Each square represents one field of the multi-field electrode when placed as
shown in Figure 5.3 d). The empty graphs corresponds to subjects where MT
amplitude was not doubled for discomfort reasons in more than 4 fields.



50 Chapter 5. Pain-maps

Figure 5.8: Average normalized pain ratings of 11 subjects for anterior forearm.
Each square represents one field of the multi-field electrode when placed as
shown on the left.

Figure 5.9: Average normalized pain ratings of 11 subjects for posterior forearm.
Each square represents one field of the multi-field electrode when placed as
shown on the left.
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Figure 5.10: Average normalized pain ratings of 11 subjects for anterior upper-
arm. Each square represents one field of the multi-field electrode when placed
as shown on the left.

Figure 5.11: Average normalized pain ratings of 11 subjects for posterior upper-
arm. Each square represents one field of the multi-field electrode when placed
as shown on the left.
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5.3.3 Field differences
Differences on pain ratings of different fields could be appreciated in the
average pain-maps. However, individual pain-maps showed a great inter-subject
variance regarding pain ratings of different fields. Hence, to check if the
differences between fields of the average pain-maps were significant or they
were just obtained by chance as a result of the big variance between subjects, a
statistical analysis was carried out. In this study, first a non parametric Friedman
test for repeated measurements [73] was carried out for each of the four areas,
to check if there were significant differences between, at least, two fields. If
the result showed positive results with a significance level of α = 0.01, then a
Wilcoxon-Nemenyi-McDonald-Thompson post-hoc analysis [73] was made to
examine which fields were significantly different. Table 5.1 shows the results
to Friedman test, where significant differences between fields were found in
upper-arm areas.

Table 5.1: Friedman test results

Arm area p-value

Anterior forearm 0.4218
Posterior forearm 0.01236
Anterior upper-arm 1.29×10−9*

Posterior upper-arm 0.0090*

*
Significant differences between fields were
found at α = 0.01

Wilcoxon-Nemenyi-McDonald-Thompson post-hoc analysis were carried
out for anterior and posterior upper-arm areas. Figure 5.12 and 5.13 show the
post-hoc results in forms of bars of anterior and posterior upper-arm respectively.
Each bar represents the average pain rating for one field, and these are ordered
from most painful to least painful fields. Colors and letters represent different
groups, where there are significant differences between groups that do not share
the same letter. In Figures 5.14 and 5.15 the post-hoc results are marked in the
pain-maps of the anterior and posterior upper-arm respectively, highlighting the
significantly different groups. Red color is used for the identification of most
painful fields and green color for the least painful fields.

5.4 Discussion

First aspect that could be remarked was the high inter-patient variability of pain
ratings obtained in the experiments. This fact could be the result of, on one
hand, the inherent subjectivity of pain [72], and on the other hand, the high
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Figure 5.12: Post-hoc results of pain ratings of fields on anterior upper-arm.

Posterior upper-arm post-hoc

Normalized pain

Figure 5.13: Post-hoc results of pain ratings of fields on posterior upper-arm
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Figure 5.14: Significantly different fields of anterior upper-arm. Being red most
painful and green least painful fields.

Figure 5.15: Significantly different fields of posterior upper-arm. Being red
most painful and green least painful fields.
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variability among stroke patient pathologies, where sensitivity is affected at
different levels in different patients [39]. Another aspect that could be perceived
at first sight was that average pain ratings of the forearm areas showed bigger
homogeneity between fields than upper-arm areas, where pain rating differences
between fields could be easily perceived. Finally, the statistical analysis carried
out at α = 0.01, revealed that there were no significant differences on pain
ratings between fields for forearm areas, but that there were differences on pain
ratings between fields on upper-arm areas. This dissimilarity between forearm
and upper-arm areas could come from the physiological differences between
muscles that belong to lower and upper areas of the arm. Whereas forearm
muscles are smaller, bigger muscles like biceps and triceps require higher
amplitudes to generate a contraction, which can lead to discomfort. Regarding
the post-hoc analysis on biceps and triceps, it was confirmed that the most
painful fields were those located most proximally, close to the return electrode,
and the least painful fields were located distally, further from the return electrode.
This phenomenon could be caused by the current distribution happening with
this electrode configuration. As explained in previous chapters, the distance
between the active electrode and the return electrode is important. If electrodes
are placed too close, most of the current flows through the superficial layers of
the skin, where lower impedance layers like fat are located, bypassing the deeper
nerves [7, 8]. Hence, one of the reasons for high pain ratings at these fields
could be that higher amplitudes were needed to achieve MT when active fields
were too close to the return electrode. Higher amplitudes result in higher current
densities, which itself increases discomfort [17, 26]. In summary, we could
conclude that there were no significantly painful spots along the forearm areas
for the application of FES, but there were significant pain differences between
some fields on the upper-arm that could be caused by electrode configuration.
To reduce produced pain in these areas, it is therefore recommended to select the
active fields located more distally on the arm so the current is forced to go deeper
in the skin and can elicit muscle contractions with lower amplitudes. Pain maps
shown in this chapter do easily illustrate recommended areas for the use of FES
on upper limb with the proposed electrode configuration. These experiments
should be carried out in a bigger population to draw more relevant conclusions,
and in that case they could be used as a guide or basis for future clinical or
research applications and design of more comfortable neuroprostheses.

Part of the work described in this chapter was presented in the 19th Annual
Conference of the International Functional Electrical Stimulation Society [74].
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6. FES modeling

Transcutaneous FES systems are complex. They can be divided into smaller
subsystems that can be modeled separately and in combinations. Most tran-
scutaneous FES models that relate stimulation parameters with joint dynamics
or kinematics are based on the combination of some of the models described
below and adaptations of these for particular FES applications.

6.1 Skin and current distribution models

Transcutaneous FES applications aim at exciting target motor nerve fibers
with electrodes placed over the skin. Hence, generated currents distribute
along the different layers and tissues of the body before reaching the nerve
fibers. Proposed skin impedance models and current distribution models provide
knowledge on how the electrical fields are spread throughout body tissues.

The skin is inhomogeneus and it is composed by different layers as shown
in chapter 2, which results in its non-linear character. Additionally, dynamic
changes on skin hydration make it time-variant. However, the skin impedance
is broadly resembled with the simple circuit shown in Figure 6.1 that consists
on a parallel resistor Rp and capacitor Cp followed by a series resistor Rs [75].
Rs represents the resistance of deep tissues (fat and muscle) and Rp and Cp

correspond to the skin impedance [75]. It has been shown that Rs is independent
of the stimulation voltage, while there is an inverse relation between Rp and the
stimulation voltage [75, 76]. Indeed, most non-linearities of the skin impedance
disappear when the most superficial layer of the skin (stratum corneum) is
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removed, in which case the Rp resistor could be neglected [75, 76]. In order to
capture the dynamic properties of the skin impedance, the use of a nonlinear
time-dependent resistor Rp has been proposed [77]. However, a later study has
shown that the non-linearities of the skin resistivity can be neglected for current
regulated FES applications that focus on muscle activation rather than electrode
voltage[78].

Figure 6.1: The simple skin impedance equivalent circuit is shown on the left
and the equivalent circuit model for a current regulated two electrode application
is shown on the right, where Relec represents electrode resistance.

Regarding the electrical potential fields, some analytical models have been
proposed for calculating intramuscular current distribution on three dimensions
caused by application of transcutaneous electrical stimulation, which take into
account properties of different tissues (skin, fat, muscle and bone) [79, 80].
Analytical models present low computational cost, but detailed geometries or
inhomogeneities are not included [81]. However, a finite difference model
and a finite element model have been proposed for calculating the electric
field generated in denervated thigh muscles in three dimensions [82, 83]. And
another model based on finite elements was proposed for describing the three-
dimensional potential field generated by transcutaneous electrical stimulation
on the forearm [81]. Although the latter models can describe current distribution
in volume conductors with inhomogeneities, main disadvantage relies in their
computational cost [84].
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6.2 Nerve models
As described in detail in Chapter 2, AP propagate along nerve axons when
the membrane potential is depolarized below a threshold value. Nerve models
aim at describing the excitation of the nerves and the propagation of AP along
their axons. The behavior of a patch of the membrane of a nerve axon can be
simulated by an electric circuit as the one shown on the left in Figure 6.2 [85]. In
this circuit, the voltage source Vr represents the resting potential, whereas C and
Rm are the capacity and resistance of the membrane respectively. Similarly, the
propagation of an AP along the axon can be simulated with the extended circuit
shown on the right in Figure 6.2, where Ra corresponds to the inneraxonal
resistance [85].

Figure 6.2: Electrical circuit for nerve axon. On the left, a single membrane
patch is represented, and on the right, the corresponding electrical network for
the axon is shown.

The membrane resistance is non-linear as it is dependent on the voltage-
gated ion channels of the membrane. Although the broadly used cable model
consists of a constant resistance value, it has been shown that linear models
cannot reproduce many properties of axons that are observed in experimental
work, so its use should be limited to subthreshold or close to steady state
applications [85, 86].

Regarding non-linear models, the most known and broadly used model is
the Hodgkin-Huxley model, which is based on experiments with giant unmyelin-
nated squid axons and describe quantitatively the voltage-current relations of a
piece of membrane [87]. In contrast to the linear models, membrane resistance
is substituted by different conductances which represent the active voltage-gated
mechanisms of the cell membrane modeled by means of differential equations
[87]. Similarly, the Frankenhaeuser-Huxley model, which was based on experi-
ments with frog nerves, proposed a solution for myelinated nerve axons and
used permeabilities instead of conductances for describing sodium, potassium
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and leakage currents of the nodes of Ranvier [88]. A mammalian nerve model
was also proposed in [85, 89], which was an adaptation of the Hodgkin-Huxley
model without taking into account potassium currents. Finally, the MRG model
was recently proposed, which incorporated a double cable structure, in order to
describe not only membrane currents at the nodes of Ranvier but at internodal
sections as well [90].

6.3 Muscle models
Muscle models aim at describing the behavior of muscle contractions at the
application of electrical stimulus. The most widely used muscle model is the
Hill model [91, 92], which represents the active and passive properties of the
musculo-tendinous units by means of three mechanical elements. The structure
of the Hill model is shown in Figure 6.3, where the contractile element CE
models active muscle force; the series elastic element SE models tendon and
soft tissue stretch; and the parallel elastic element PE models passive muscle
force [91, 92].

Figure 6.3: Hill muscle model.

Modifications of Hill models and other proposed muscle models have been
compared, where a combination of Huxley (based on biophysical cross-bridge
mechanisms) and Hill models [93, 94] and a second order system with added
static non-linearities [95] have shown best results [96, 97, 98]. However, basic
Hill type models are not accurate for predicting muscle forces when the muscle
length is variable (non-isometric contractions) [99]. Similarly, the Huxley-Hill
model [93, 94] have not been tested yet on non-isometric contractions.

Another popular model for describing the nonlinear muscle activation dy-
namics is the electrical Hammerstein model, which consists on a static non-
linearity followed by a linear subsystem [100, 101] as shown in Figure 6.4.
In muscle model applications, the static non-linearity represents the Isometric
Recruitment Curve (IRC), which describes the relation between the stimulus
level and the output torque at a fixed muscle length. Then, the linear subsystem
represents the muscle contraction dynamics. A Wiener-Hammerstein muscle
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model has also been proposed and proved to be as accurate as the Hill-Huxley
model while being less complex and having less unknown parameters [102].

Figure 6.4: Hammerstein model.

6.4 Upper-limb biomechanical models

Although biomechanical models of lower-limb applications are well established
(specially for gait), upper-limb biomechanical models are still in early stage due
to the complex nature of the upper limb [103]. Main challenges of upper-limb
modeling include the variability of non-cyclic task-dependent movements and
inter-subject movements, large ranges of motion, high number of DOF, and
difficulty of measuring kinematic or dynamic data [103]. However, differ-
ent approaches have tried to overcome these problems. Some of the simpler
proposed biomechanical models for the complete upper-limb consist of three
rigid body segments representing upper-arm, forearm and hand, and describe
shoulder, elbow and wrist joint kinematics [104, 105]. One of the proposed
models, based on visual tracking systems, leads with skin-movement artifacts
and describes wrist and elbow angles [104]. Similarly, another kinematic model
was developed to obtain joint angles of the trunk, shoulder and elbow using a
visual tracking system and validated in stroke patients reaching tasks, proposed
for the assessment of stroke rehabilitation [106]. Another approach based on a
spatial tracking system includes 7 DOF that describe functional physiological
parameters: shoulder abduction-adduction, shoulder flexion-extension, shoulder
internal-external rotation, elbow flexion-extension, elbow pronation-supination,
wrist flexion-extension and wrist abduction-adduction [105]. Musculoskeletal
models are more complex models that aim to describe joint kinematics based
on the interaction between muscles and bones. One of the proposed muscu-
loskeletal models for upper-limb includes 13 DOF based on 26 muscle groups
for describing relative positions and orientations of 7 bones of the upper-arm
(including clavicula and scapula) and forearm [107]. A recent study proposed
and compared three different upper-limb models of different complexity for
shoulder, elbow and wrist motion, based on the Delft shoulder model[108], and



64 Chapter 6. FES modeling

concluding that best model depends on the simulation task, required accuracy
and computational cost [109]. Finally, another model aimed at musculoskeletal
surgery applications, including finger and thumb joints in a complete upper-
limb model of 15 DOF and 50 muscle compartments, which described shoulder,
elbow, forearm, wrist, thumb and index finger kinematics [110].

Although a complete hand has not been included in any upper-limb biome-
chanical model, hand models have been proposed separately. Kinematic models
have been proposed based on visual tracker systems for computer vision appli-
cations [111, 112]. However, musculoskeletal models are more challenging due
to the anatomical complexity of the hand and wrist, which are composed by a
total of 27 bones and 45 muscles, where fingers are controlled by a combination
of intrinsic and extrinsic muscles, resulting in a system with at least 23 DOF
at the joints [113]. Several groups have proposed different three-dimensional
models of human fingers, focusing on specific elements for certain purposes.
Some of these include a model for estimating muscle-tendon tension during
climbing grips [114], a biomechanical model for the finger pulley system [115],
a three-dimensional inverse dynamic model of the index finger for free finger
movements [116], finger and thumb models for determining fingertip forces
for pinch applications [117, 118, 119], or a finger model based on non-linear
optimising techniques adaptable to the study of different escenarios [120].
Most proposed models present a similar configuration, where they use fixed
axes of rotation and an indeterminate system of equations with more unknown
parameters (muscle forces) than available equations. Recently, a realistic com-
plete biomechanical hand model has been proposed by merging the current
knowledge of biomechanics, ergonomics and robotics, for modeling movements
(excluding wrist) of the hand and grasps [121, 122]. A complete biomechanical
hand model including finger and wrist joints is now being developed at Delft
University, which includes the 45 intrinsic and extrinsic muscles of the hand
[113].

6.5 Upper-limb FES models

Previously presented analytical models have been designed and validated for
specific applications. Some of them have been adapted or taken as a basis
for upper-limb FES applications, having stimulation parameters as inputs and
joint forces or angles as outputs. One of the upper-arm FES models was
developed for shoulder and elbow joints based on the model proposed by the
Delft University [108], adapted for the application of percutaneous FES on
SCI patients [123]. Blana et al. developed another model for both forward and
inverse dynamic simulations of shoulder and elbow joints, which was validated
with electromyographical (EMG) data and adapted to high cervical level SCI
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subjects [124]. Another model was proposed by Freeman et al. for a FES-based
stroke rehabilitation application, where a robotic workstation constrained the
forearm to movements on the horizontal plane and FES was applied to triceps
muscle [125]. The activation dynamics in this model based on a Hammerstein
structure, whose identification used on a recursive approach [126]. Regarding
models for hand FES applications, Keller et al. proposed a Hammerstein
model for predicting isometric finger forces [127]. Similarly, Westerveld et
al. proposed a model for predicting and controlling constrained thumb forces
in two dimensions for healthy and stroke subjects [128]. A recent publication
includes a simplified model of the hand for FES control purposes consisting on
a single composite finger and wrist [129], and a complete ILC based approach
for hand posture control based on multi-field surface electrodes [130].

By the time this thesis started, to the author’s knowledge, only one model-
based FES-induced grasp control application had been proposed with multi-field
electrodes [130]. However, it was based on a simplified model of the hand and
no model accuracy results were presented as they focused on control. Indeed,
stimulation application sites were predefined before the control stage and thus
were not taken into account in the model. However, as stated earlier, the
electrode configuration and FES application site are key for achieving more
selective stimulation. The latter is critical as the relative position of the nerves
and the skin change during arm and hand movements [131, 132]. Therefore,
we believe that taking both stimulation parameters and application sites into
account is essential for obtaining accurate models of FES-induced selective hand
movements. The musculoskeletal complexity of the hand and wrist combined
with the success of intelligent computing techniques in other FES applications
mentioned in the next chapter, brought the present thesis to propose a novel
model of surface multi-field FES-induced hand movements. In this thesis,
we present the first steps of a modeling approach for a complete FES system
based on intelligent computing techniques that pretends to cover the different
subsystem models described, from the skin to the biomechanical model. The
aim of the proposed models is to support the design and development of new
surface FES neuroprostheses and control techniques for hand grasp.





7. Computational Intelligence

Although there is no common definition for the Computational Intelligence (CI)
term, it can be described as a combination of Soft Computing and numerical
processing techniques for developing systems that simulate intelligent behav-
ior by giving outputs based on experimental evidence and prior knowledge
[133]. Hence, CI techniques properly suit complex, nonlinear, time varying
or stochastic processes. Although CI is a wide interdisciplinary area covering
many fields, the main disciplines covered by CI are fuzzy systems, artificial
neural networks (ANN) and evolutionary computation [133]. Despite being
these the most established disciplines, many others are also considered as part of
CI, such as learning theory, probabilistic methods, swarm intelligence, artificial
immune systems or rough sets among others [134, 135]. Different approaches,
methods and tools developed in these disciplines and their combinations share
a common goal, which is the development of intelligent systems. In the present
chapter the basic concepts of those paradigms that relate to this thesis will be
briefly described.

7.1 Fuzzy Systems

Fuzzy systems allow handling the concept of partial truth, which enables
modeling uncertainties found on linguistic terms. The input space is described
by the fuzzy sets and fuzzy terms and these are then mapped to the output space
by means of fuzzy logic and fuzzy inference systems based on fuzzy rules.
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7.1.1 Fuzzy sets
Fuzzy set elements are described by membership degrees, which determine
the certainty that a given element belongs to that set. Formally, a fuzzy set
A is characterized by a membership function µA(x) which associates a real
number from the interval [0,1] with each point in X . Where X is the domain and
x ∈ X is a specific element of that domain. Thus, the µA(x) value represents the
membership degree of x in the set A. In the classical set case, the membership
function µA(x) can only take two values, which are 0 or 1, so fuzzy sets are an
extension of classical sets. A discrete fuzzy set A is then defined as a set of
ordered pairs in a X domain [135]:

A = {(µA(xi)/xi)|xi ∈ X , i = 1, · · · ,n}
A = µA(x1)/x1 +µA(x2)/x2 + · · ·+µA(xn)/xn

=
n

∑
i=1

µA(xi)/xi

(7.1)

In this case the summation should not be confused with the arithmetical
operation. It only indicates that the fuzzy set is a collection of ordered pairs.

The membership function µA(x) is therefore used to associate a membership
degree of each of the elements of the domain to a certain fuzzy set. Shape of
fuzzy terms can be of any type, which is usually defined for specific problems.
The only requirement is that the membership function should be bounded
between 0 and 1 and that for each x ∈ X there must be a unique µA(x) value.
Most common shapes include triangular, trapezoidal, gaussian or bell-shaped
functions. As an illustration, Figure 7.1 shows an example of three fuzzy
sets, which are cold, comfortable and hot sets, represented by a descending
monotonic, a triangular and an ascending monotonic membership function
respectively. Each temperature value is paired with a membership degree for
each set. For example, a temperature of 0 ◦C belongs to the cold set with
membership value 1 and to comfortable and hot sets with value 0. However,
25 ◦C belongs with a certain degree to both comfortable and hot sets.

When the values of a variable are words or sentences, then it is called
linguistic variable, which in fuzzy systems usually correspond to the labels
of fuzzy sets. In the Figure 7.1 case, the temperature is a linguistic variable
represented by cold, comfortable and hot terms. This capacity of dealing with
uncertainty is the essence of the fuzzy systems [135].

7.1.2 Fuzzy logic and inference
Fuzzy logic together with an inference system results in a tool that approximates
reasoning. The main core of fuzzy logic are the linguistic fuzzy rules, which
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Figure 7.1: Example of fuzzy sets.

characterize the behavior of fuzzy systems and are usually based on human or
expert knowledge [135]. Fuzzy rules are usually of the form

if antecedent, then consequent (7.2)

where both antecedent and consequent are propositions containing linguistic
variables. In general, a fuzzy rule can be expressed as

if A is a and B is b, then C is c (7.3)

where A, B and C are fuzzy sets. Both antecedent and consequent parts of a
rule can be composed by a combination of fuzzy sets by means of fuzzy logic
operators, although the consequent part usually consists on a single fuzzy set
[135].

Fuzzy sets and fuzzy rules form the basis of fuzzy rule-based reasoning
systems, where fuzzification, inference and defuzzification concepts complete
the whole system. Fuzzification is the process of converting crisp values
into fuzzy input values, which is achieved with membership functions that
associate values with their membership grades to fuzzy sets present in the
input space. The inverse process of converting fuzzy values into crisp values
is called defuzzification. There are many methods on literature for calculating
approximate numerical outputs from fuzzy sets, and the selection of the method
is dependent on the application. Most common methods include the center of
gravity method, the averaging method, the mean-max method or the max-min
method, among others. Finally, inference is the process that maps a given input
space to the corresponding output space in a non-linear manner. The most used
fuzzy inference mechanisms are the Mamdani and Sugeno models [133, 135].

A typical rule of a set of R rules in Mamdani type of fuzzy inference is
defined as

rk : if x is Ak
i and y is Bk

j, then z is Ck
l (7.4)
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where k = 1,2, · · ·R, i = 1,2, · · · ,N, j = 1,2, · · · ,M, and l = 1,2, · · · ,L.
N and M are the number of membership functions for inputs, and L the number
of membership functions for outputs. Last step of converting the output fuzzy
sets into a crisp value is carried out by a defuzzification method.

Sugeno type of inference systems have a crisp function as a consequent part
of the fuzzy rules, which have the following form

rk : if x is Ak
i and y is Bk

j, then zk = f (x,y) (7.5)

where x and y are the inputs, z is the output, k = 1,2, · · · ,R, i = 1,2, · · · ,N,
j = 1,2, · · · ,M, and N and M are the number of input membership functions.
z = f (x,y) is the crisp consequent part of the rule, and although it is usually
polynomial in the input variables x and y, it can be any function. When this
is a first-order polynomial, the resulting inference system is called first-order
Sugeno, and if it is a constant value, it is called a zero-order Sugeno. The final
output of a Sugeno fuzzy model is obtained with the weighted average of the
crisp zk outputs, avoiding the time-consuming defuzzification process required
by Mamdani models [133].

7.2 Artificial Neural Networks
Artificial Neural Networks (ANN) were inspired by the brain and pretend to
mimic the behavior of the nervous system. Although research on ANN has lead
to a broad and diverse variety of different type of ANN, only the basic concepts
of those relevant to the present thesis will be described.

7.2.1 Neuron unit
ANN are composed by many information processing units called neuron units,
which try to mimic the behavior of biological neurons. Each neuron unit has a
vector of inputs (x1,x2, · · · ,xn), with its corresponding weights (w1,w2, · · · ,wn),
and a threshold called bias. With this information, an activation function
determines the output signal of the neuron [135]. The input signal to the
activation function is usually determined by a weighted average of the form

n

∑
i=0

xiwi (7.6)

In some cases the weight of the bias is represented by θ and its input x0 is
assumed to have value 1, in which case, the input signal to the activation
function takes the form

n

∑
i=1

xiwi +θ (7.7)
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The general structure of a single neuron unit is shown in Figure 7.2. The
activation function can be of any type, although most used functions include
linear, step, ramp, sigmoid, hyperbolic or gaussian functions [135], from which
examples are shown in Figure 7.3.

Figure 7.2: Artificial neuron.

7.2.2 Multi-layer feedforward networks and backpropagation

Multi-layered feedforward networks are the standard most used type of ANN
and consist on a group of many interconnected artificial neurons organized in
multiple layers. These neurons form forward connections only, so information
is transmitted from lower layers to higher layers in one direction. Multi-layer
feedforward networks are considered static networks as they are characterized
by memoryless nonlinear equations. Their morphology consists of an input
layer (first layer), an output layer (last layer) and one or more hidden layers
between them. In Figure 7.4, an example of a multi-layer feedforward network
with two hidden layers is shown.

Regarding general notation, each layer k has Nk number of neurons. Each
of them is noted as N(k)

i , which refers to neuron number i from layer number k.
Similarly, the output of the i-th neuron of layer number k is noted as y(k)i . The
detailed scheme and notation of a N(k)

i neuron is shown in Figure 7.5, where
usually the activation function is of the sigmoid or hyperbolic tangent form
[133].
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Figure 7.3: Activation function examples: a) linear function, b) step function, c)
ramp function, d) hyperbolic tangent function, e) sigmoid function, f) gaussian
function.

Figure 7.4: Multi-layer feedforward network morphology. An example with
one input layer, two hidden-layers and an output layer.

Hence, the output signal of neuron N(k)
i at the instant t, where t = 1,2, · · ·

is defined as

s(k)i (t) =
Nk−1

∑
j=0

w(k)
i j (t)x

(k)
j (t)

y(k)i (t) = f (s(k)i (t))

(7.8)
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Figure 7.5: Detailed scheme of a multi-layer feedforward neuron: i-th neuron
of layer k.

where f is the activation function. The forward pass of a multi-layer feedforward
network begins at the input layer, then the outputs of each neuron are updated
layer by layer, until reaching the final layer. This is called the output layer,
where the outputs of the neurons are the final outputs of the network [133].

Learning in neural networks is the procedure of modifying and tuning the
weights and the biases in order to obtain the desired behavior of the ANN.
Most ANN are tuned under supervised learning, which is based on a set of
input/output data (also called training data) of desired network behavior. As
the inputs are applied to the network, the network outputs are compared to
the desired outputs. The learning or training algorithm is then used to ad-
just the weights and biases of the network in order to reduce the difference
between obtained and desired outputs. This error reduction is carried out contin-
uously modifying the network parameters until an acceptable error is reached.
Although many learning algorithms exist, the most commonly used backpropa-
gation (BP) algorithm will be briefly described, as it is used in the following
chapters.

The BP method is based on the gradient descent method, which continuously
modifies the weights of the network to reduce the difference between the desired
output and the actual output of the network. The error in the output layer is then
backpropagated into previous layers, one layer at a time, until the first layer is
reached [136]. The error between desired outputs d j and network outputs y j,
which is also referred to as cost function, can be of different forms, for example
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the sum square of the output errors defined as

E(t) =
1
2

m

∑
j=1

[d j(t)− y j(t)]2 =
1
2

m

∑
j=1

e j(t)2 (7.9)

where m represents the number of outputs and e j(t) the error at instant t of
output j.

According to gradient descent, the correction of the weight vectors are
made in the direction of decreasing error function, and thus, are proportional to
the negative of the gradient of the error function. The general weight update
formula is

w(k)
i j (t +1) = w(k)

i j (t)−η
∂E(t)

∂w(k)
i j (t)

(7.10)

where η represents the learning rate and defines the convergence speed of the
updating process. If δ is defined as

δ
(k)
i (t) =− ∂E(t)

∂ s(k)i (t)
(7.11)

then, the weight update function can be noted as

w(k)
i j (t +1) = w(k)

i j (t)+ηδ
(k)
i (t)x(k)j (t) (7.12)

and the δ
(k)
i in each layer k is updated by the formula

δ
(k)
i (t) = f ′(s(k)i (t))

N(k+1)

∑
l=1

δ
(k+1)
l (t)w(k+1)

li (t)

= f ′(s(k)i (t))ε(k)
i (t)

(7.13)

where f ′ is the differential of the activation function and ε
(k)
i represents the

backpropagation error and is defined as

ε
(k)
i (t) =

N(k+1)

∑
l=1

δ
(k+1)
l (t)w(k+1)

li (t) (7.14)

This is the basic BP algorithm, which is widely used for its simplicity and
online adapting nature. One of its disadvantages is that it can be trapped in local
minimum and so, it is highly dependent on the initial weight values. However,
many modifications to the basic BP algorithm have been proposed to reduce
this problem [133, 136]. A very common modification is the inclusion of a
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momentum term α , which involves modifying the weight update equation 7.12
like this

w(k)
i j (t +1) = w(k)

i j (t)+ηδ
(k)
i (t)x(k)j (t)+α[w(k)

i j (t)−w(k)
i j (t−1)] (7.15)

The momentum term α determines the influence of the past weight changes
on the current direction of movements in the weight space, which usually results
in a reduction of oscillations.

7.2.3 Recurrent neural networks
Recurrent neural networks (RNN) are called like this because they include
recurrences or feedback loops in their structure, which allow them to emulate
dynamic processes. Thus, they are also known as dynamic neural networks.

Similar to the neuron unit presented in the previous section, the dynamic
neuron unit has the form shown in Figure 7.6, where a self-recurrence weighted
connection makes it able to process information from the past and store current
information for future usage. fi represents the activation function and gi the
neural output function.

Figure 7.6: Scheme of a general dynamic neuron unit i [136].

RNN networks can be formed by dynamic or static neuron units, but unlike
multiple-layer feedforward networks, their structure contains feedback connec-
tions. There are many types and modifications of RNN, but as an illustration,
only the morphology of the three most known networks will be shown, which
are the Elman, Jordan and Hopfield structures. Elman and Jordan RNN consist
on modifications of the already described multiple-layer feedforward network.
Elman structure makes a copy of the hidden layer called context layer, whose
purpose is to feed the hidden layer with previous network states. Similarly,
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the Jordan structure makes a copy of the output layer called state layer, which
feeds the hidden layer with previous network output states [133, 135]. Figure
7.7 shows basic examples of both Elman and Jordan RNN. On the other hand,
Hopfield structure is a one-layer network with a regular structure, which con-
sists on a fully connected network, except for self-connections as shown in a
simplified scheme in Figure 7.8 [136].

Figure 7.7: Elman and Jordan recurrent networks.

Figure 7.8: Hopfield neural network.

Main advantage of RNN in general is that they are nonlinear dynamic net-
works, which make them appropriate for identification and control of nonlinear
dynamic systems [136].



7.3 Neuro-fuzzy systems 77

7.3 Neuro-fuzzy systems

Fuzzy logic systems are based on linguistic expressions, but construction of
membership functions and fuzzy rules depend on expert knowledge and can
be a tedious or difficult task in complex systems. On the contrary, ANN au-
tomatically learn their parameters from experience, but their morphology and
parameters are abstract and not related to linguistic terms. Both are mathemat-
ical model-free systems with different advantages and drawbacks. However,
merging both approaches into neuro-fuzzy systems result in systems that are
able to learn from experiential data by means of learning algorithms, while
representing linguistic knowledge by means of fuzzy sets. Thus, neuro-fuzzy
systems take advantages of both systems and solve some of the drawbacks
present when any of the systems is used independently. Neuro-fuzzy systems
can be of different forms depending on the aim and the way they are combined.
In this section cooperative neuro-fuzzy systems and hybrid neuro-fuzzy systems
will be briefly described.

7.3.1 Cooperative neuro-fuzzy systems

The aim of the cooperative combination is that the neural network determines
or assists in the definition of certain parameters of the fuzzy system or vice
versa, where both systems work independently. In some combinations, the
fuzzy system provides prerequisite information to an ANN in order to speed
up the learning. On the contrary, in other cases the ANN is used to determine
the membership functions of the fuzzy system by learning from obtained data
[133]. An example scheme of both approaches is shown in Figure 7.9.

7.3.2 Hybrid neuro-fuzzy systems

Unlike in cooperative systems, in hybrid approaches both the fuzzy system and
the ANN are merged. On one hand, the rule base is replaced by an ANN and
so, inference is simplified. And on the other hand, the parameters of the fuzzy
system (membership functions) are found by learning methods obtained from
ANN. In order to achieve this, usually in hybrid approaches the fuzzy system is
represented in a network-type structure. Like this, learning algorithms such as
BP can be applied [133]. Again, although many hybrid neuro-fuzzy approaches
are available on the literature, the most well known adaptive networks will
be briefly described, which are the Adaptive Neuro-Fuzzy Inference System
(ANFIS) and its homologous multiple output system CoActive Neuro-Fuzzy
Inference System (CANFIS).

The ANFIS is an adaptive network that is functionally equivalent to a
fuzzy inference system [137]. A basic ANFIS scheme representing a first-order



78 Chapter 7. Computational Intelligence

Figure 7.9: Cooperative neuro-fuzzy examples: a) a fuzzy system determines
the inputs of an ANN, and b) an ANN adapts the membership functions by
learning from data. Adapted from [133]

Sugeno fuzzy model of two inputs, two rules and one output is shown in Figure
7.10 and described below.

Figure 7.10: ANFIS scheme equivalent to a first-order Sugeno fuzzy model of
two inputs, two rules and one output.

ANFIS usually consist of five layers, where the first layer is the membership
layer. The nodes corresponding to this layer are adaptive, where the outputs
represent the grade of membership of the inputs to the corresponding fuzzy sets.
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In the example shown in Figure 7.10, the outputs are:

O1,i = µAi(x), for i = 1,2

O1,i = µBi−2(y), for i = 3,4
(7.16)

The parameters of the membership functions, which adapt with the learning
algorithm, are called premise parameters. The nodes of the second layer are
fixed and represent the rules. Their outputs are the product of all the incoming
signals, in this case:

O2,i = wi = µAi(x)µBi(y), for i = 1,2 (7.17)

The nodes of the third layer are also fixed and they calculate the ratio of the
firing strength over the sum of all firing strengths, also called normalized firing
strengths:

O3,i = w∗i =
wi

∑i wi
(7.18)

The nodes from the fourth layer are adaptive nodes, which in this case are
represented by a first-order Sugeno function

O4,i = w∗i fi = w∗i (pix+qiy+ ri) (7.19)

where pi, qi and ri are called consequent parameters and are modified by the
learning algorithm.

Finally, the nodes of the last layer are fixed and compute the network output
as the summation of all the incoming signals:

O5,1 = ∑
i

w∗i fi =
∑i wi fi

∑i wi
(7.20)

The adaptive network structure of the ANFIS permits learning the premise
and consequent parameters with different training algorithms, such as the
previously described BP [137].

CANFIS is a generalized ANFIS that can be applied to multiple-input
multiple-output (MIMO) systems. A basic CANFIS scheme representing a
first-order Sugeno fuzzy model of two inputs, two rules and two outputs is
shown in Figure 7.11. As it can be seen, it follows the same structure as the
ANFIS except the normalization layer, which in the CANFIS case is carried out
in the last layer [137].
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Figure 7.11: CANFIS scheme equivalent to a first-order Sugeno fuzzy model
of two inputs, two rules and two outputs.

7.4 Evolutionary algorithms

Evolutionary computing is the emulation of the process of natural selection in a
search procedure adapted to optimization problems, where more fit individuals
have the opportunity to mate most of the time, and thus, expect that the offspring
will have similar or better fitness. Although there are many different variants of
evolutionary algorithms, the common underlying idea is the same for all. Given
a population of individuals, the natural selection process causes a particular
group of individuals to survive depending on the fitness [138]. Main concepts
common to most evolutionary algorithms will be briefly described followed by
the description of differential evolution (DE) algorithm, which is the algorithm
used in the present work.

7.4.1 Main concepts
In nature, traits or features of organisms are represented in long chains of genes
that contain coded information called chromosomes. Similarly, in evolutionary
algorithms, chromosomes are usually called individuals and are represented by
a vector of elements, where each of these elements represents one parameter
of the optimization problem. The coding of these chromosomes can be done
in different ways depending on the algorithm and application [138]. The
population in evolutionary algorithms represents the search space and it is
composed by individuals. The maximum number of individuals in a population
is called the population size [138]. At the beginning, this population is usually
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defined by a randomly chosen or generated set of individuals, and generation
by generation, the population changes or adapts towards a solution. The size
of the population is an important parameter for any evolutionary algorithm,
as small populations can limit the diversity and miss good individuals, and
on the contrary, large populations are computationally more expensive and
converge slower towards the solution [138]. The population is updated in each
generation by a new set of individuals, which represent potential solutions to
the optimization problem, and this new generation is usually formed through
the application of three operators: selection, crossover and mutation [138].

The selection operator selects individuals from the population to be copied
for possible inclusion in the next generation. The chance of an individual of
being selected usually depends on its fitness value, which is determined by
an evaluation function that is specific to each application. In each genera-
tion, the selected individuals are placed into a mating pool, for creating the
offspring for the next generation. There are many selection operators, such
as random selection, where individuals are selected randomly; rank-based or
proportional selection, where individuals with higher fitness have more chances
to be selected; or elitist selection, where individuals with highest fitness are
selected; among others [138]. Crossover operator, also known as recombination,
mates selected individuals to produce new individuals based on the genes or
parameters of the parents. The aim is to create new individuals with higher
fitness values that form the new generation. Crossover probability determines
the probability that a selected individual will undergo a crossover operation or
not, so unless this probability is 1, there will always be a set of individuals that
are copied without changes to the new generation. Depending on the crossover
operation method the offspring can have a single parent, two parents or mul-
tiple parents. Different and diverse crossover operators are available, which
determine the way the combination of parent individuals is carried out to give
birth to the new individuals [133, 138]. Finally, the mutation operator randomly
changes a gene or parameter value of an individual with a mutation probability,
which is usually very small. This operation ensures diversity on the population,
and thus, can overcome problems derived by a bad initial population [138].

Evolutionary algorithms are based on these concepts, and most popular
algorithms include evolution strategies, evolutionary programming, genetic
algorithms, genetic programming or DE [133, 138]. In the next subsection, DE,
which is used in the present work, will be briefly described.

7.4.2 Differential evolution

Like other evolutionary algorithms, DE is a population-based optimizer which
has a population of randomly selected individuals as a starting point. Each
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individual consists of a vector of parameters, and in the initial population these
individuals are chosen randomly from within boundaries fixed for the specific
application. From then on, DE generates new individuals by combining and
perturbing existing ones driving the population towards a optimum solution, as
described next.

Individuals in DE consist of a vector of parameters x of length D, and
the most versatile implementation of DE is based on two populations with Np

individuals each, where Px represents the current population and Pu represents
the trial population [139]. Individuals and populations are defined like this:

Px = {X1,X2, · · · ,XNp}
Xi = {x1i,x2i, · · · ,xDi}

(7.21)

Pu = {U1,U2, · · · ,UNp}
Ui = {u1i,u2i, · · · ,uDi}

(7.22)

After initializing the population within the predefined boundaries, DE
mutates and recombines the population to produce a new population of N p
trial vectors. Mutation in DE consists of adding a scaled, randomly sampled
(for every mutant) vector difference to a third vector [139]. Each of the mutant
vectors Vi is therefore formed as follows:

Vi = Xr0 +F · (Xr1−Xr2) (7.23)

where r0, r1 and r2 represent randomly chosen individual indexes, and F is a
positive real number that controls the rate at which the population evolves. The
base vector Xr0 can also be selected following other criteria, depending on the
DE version [139]. A graphical example with two dimensional vectors is shown
in Figure 7.12.

Apart from mutation, a crossover strategy is also applied in DE, which
builds trial vectors from parameter values copied from current population
vectors and mutant vectors [139]. The crossover probability Cr controls the
fraction of parameter values that are copied from the mutant Vi to the trial vector
Ui as follows:

Ui = {u1i,u2i, · · · ,uDi}

u ji =

{
v ji with prob =Cr or j = jrand
x ji otherwise

(7.24)

In addition, the trial parameter with randomly chosen index jrand will be
taken from the mutant to ensure that the trial vector Ui is not identical to the



7.4 Evolutionary algorithms 83

Figure 7.12: Differential mutation is performed by adding a weighted difference
F · (Xr1−Xr2) to a base vector Xr0 [139].

Figure 7.13: Crossover DE: possible Ui trial vectors after crossing Vi and Xi

[139].

current population vector Xi. An illustration of possible trial vectors resulting
from the crossover is shown in Figure 7.13.

Once the trial population Pu is formed, the current population Px updates its
values according to a selection process. Thus, this selection process determines
the population of the next generation [139]. If the trial vector Ui has a lower
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cost value (or higher fitness value), than its target vector Xi, then it replaces the
target vector in the next generation, otherwise the target vector remains:

Xi,new =

{
Ui if f (Ui)≤ f (Xi)
Xi otherwise

(7.25)

where, f is the cost function.
Once the new population is built, the process of mutation, crossover and

selection is repeated until a predefined termination criteria (maximum number
of iterations, error threshold,...) is satisfied. Although many versions and
modifications of DE have been proposed for different applications [139], these
are the basic principles that describe the concept of DE algorithm.

7.5 FES applications
CI techniques have been applied to FES applications. Most of these approaches
involve the use of ANN due to their capacity of learning and adapting from
experiential data, where different ANN approaches have been proposed for
lower-limb applications [140, 141, 142, 143] and upper-limb applications,
which include applications for control of elbow [144, 145], shoulder and elbow
[146, 147] or classification of surface multi-field electrodes for hand movements
[148]. Solutions based on fuzzy logic controllers have also been proposed for
FES applications such as rowing [149], FES-induced leg swinging motion
[150], or standing [151]. Neuro-fuzzy approaches have also been proposed for
FES applications. Lower limb applications include a comparison of different
neuro-fuzzy approaches for simulating FES-induced leg swing [152]; a com-
parison of FES-induced knee extension analytical and ANFIS models, where a
combination of both showed best results [153]; an application for controlling
the leg swing with a neuro-fuzzy system combined with reinforcement learning
[154]; and recently, a FES standing control application where a combination of
an ANFIS and a Proportional-Integral-Derivative (PID) controller is proposed
[155]. Regarding upper-limb applications, a cooperative system of ANN and
fuzzy logic for indoor rowing exercise has been investigated [156, 157]. A
neuro-fuzzy approach has also been used in FES-induced reaching applications,
where the control is carried out cooperatively between a neuro-fuzzy system
and the CNS [158].

As stated in the previous chapter, the complexity of the analytical model
of the hand and wrist for FES-induced movements, combined with the suc-
cess of CI techniques in other FES applications, brought the present thesis
to propose a novel approach based on CI techniques for FES-induced hand
movements. Based on the linguistic interpretability of fuzzy systems and the
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learning capacity of ANN, we selected a neuro-fuzzy approach for combining
both characteristics. Thus, in this thesis, we present the first steps of an model-
ing approach based on a combination of CI techniques for its application on
surface FES neuroprostheses for grasping.





8. Neuro-fuzzy model - Part 1

CI techniques have successfully been applied to other FES applications as
described in the previous chapter but not to FES-induced hand movements.
Regarding analytical methods, to date only one simplified model for FES-
induced hand movements with surface multi-field electrodes has been published
[130]. It was designed for control purposes, where electrode configuration was
predefined and remained constant. However, electrode configuration and FES
application site are key for achieving selective movements. Indeed, the relative
position of the nerves and the skin change during arm and hand movements [131,
132]. Thus, a model that takes into account stimulation parameters together
with spatial application sites is needed for the development of more selective
neuroprostheses. Due to the complexity and dimensionality of the upper-limb
and specially the hand, we believe that CI techniques could bring new modeling
and control possibilities to the field of upper-limb surface neuroprostheses in
the near future, and thus, speed up the process of designing successful surface
neuroprostheses.

The aim of the work presented in this chapter was to check the feasibility
of using a neuro-fuzzy approach for modeling FES-induced hand movements
with multi-field electrodes. Two different neuro-fuzzy systems were tested and
trained with data collected from two stroke patients. Data collection was carried
out in collaboration with the ADACEN (Acquired Brain Injury Association of
Navarra) center.
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8.1 Materials

The materials used in this set of experiments consist of a FES system and a
sensor system for measuring wrist and finger flexion/extension, which were
fully controlled by a custom-made GUI built on Matlab Software.

8.1.1 FES system

The FES system that we used in these experiments was the same as the one
presented in chapter 5. The system consisted on an IntFESV2 stimulator shown
in Figure 5.1 and two regular matrix electrodes shown in Figure 5.2, which were
used for the stimulation of the anterior and posterior forearm. The details of
the system are given in chapter 5. Additionally, conventional single electrodes
(50x50 mm) and Compex stimulators were used for the adaptation sessions as
therapists were more familiar to them.

8.1.2 Sensor system

The sensor system for measuring hand and finger flexion/extension consisted
of a combination of two separated systems based on inertial sensors and optic
fiber based sensors. For the measurement of finger flexion/extension the 5Data
instrumented glove from Fifth Dimension Technologies was used, which is
shown in Figure 8.1. It contained 5 optic fiber sensors, one for each finger,
which provided the percentage of curvature of both metacarpophalangeal and
proximal interphalangeal joints with respect to a previously defined maximum
value. In this experiment, the maximum and minimum values were defined by
the passive range of motion (PROM) measured at the beginning of the sessions.
The PROM is the maximum range of motion at a given joint when this is moved
by the therapist.

Figure 8.1: 5Data glove (on the left) and 3-Space sensor size and axes (on the
right).
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Wrist flexion/extension was measured with two 3-Space wireless inertial
sensors from YEI Technology shown in Figure 8.1. One of them was mounted
on the posterior side of the palm and the other one was mounted on the posterior
side of the forearm, close to the wrist. Euler pitch angles were collected from
these sensors and their difference was taken as an approximation of the wrist
joint angle, which was also scaled to PROM values. Data from all sensors were
collected at 20Hz and they were all calibrated at the beginning of the session as
described in next section.

8.2 Methods

The objective of this first experiment was to check the feasibility of using neuro-
fuzzy systems for modeling FES-induced hand movements in stroke patients.
For this purpose, FES-induced hand movement data was collected from two
volunteer chronic stroke patients at the ADACEN center. The protocol was
approved by ADACEN and both participants signed an informed consent. Both
subjects were left side affected and times from stroke were 3 and 4 years for
Subject 1 and Subject 2 respectively.

8.2.1 Adaptation sessions

The aim of these sessions was to make the subjects familiar to the feeling
produced by transcutaneous FES and at the same time train the forearm muscles
before carrying out the main session. These sessions were carried out on
the week before the main session and consisted of 30 minutes of electrical
stimulation carried out daily on both sides of the forearm. As mentioned before,
a preprogrammed Compex stimulator and conventional single electrodes were
used for these sessions because therapists already had experience handling
them.

Electrode pairs were placed longitudinally on the forearm, with the return
electrodes placed on the wrist and active electrodes placed covering exten-
sor/flexor muscles of the forearm. The stimulation was carried out in three
phases, where a sequence of 5 seconds of stimulation on posterior forearm, 5
seconds on anterior forearm and 5 seconds of rest was followed all the time:

- Phase 1: frequency 25 Hz, pulse-width 150 µs and low amplitude (above
sensory threshold but below motor threshold). (5 minutes)

- Phase 2: frequency 25 Hz, pulse-width 250 µs and high amplitude (above
motor threshold, as high as tolerated). (20 minutes)

- Phase 3: frequency 5 Hz, pulse-width 250 µs and low amplitude (above
sensory threshold but below motor threshold). (5 minutes)
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8.2.2 Main session
After the adaptation week, the main session was carried out, which had a
duration of around 60 minutes in total. Parameters during the whole session
were set at 25 Hz frequency and 200 µs pulse-width.

The first stage consisted of donning the electrodes and sensor system on
subjects’ arm, where the electrode placement was the same as the one shown in
Figure 5.3 in chapter 5, with medial and lateral epycondiles taken as a reference.
An elastic sleeve was put on top of the electrodes to ensure hydrogel-skin
contact throughout the experiment. Finally, the instrumented glove was donned.
Figure 8.2 shows the arm of a subject after the donning stage.

Figure 8.2: Donned FES and sensor systems.

After the donning stage, the calibration stage followed. At this point, the
subject was seated in a chair and rested his arm on top of a table with an
elbow angle of 90 degrees. The forearm rested on top of a pillow and was
kept in neutral position throughout the whole experiment. Firstly, PROM
ranges were registered by collecting maximum extension/flexion of wrist angles
and maximum and minimum flexion percentages of fingers. Afterwards, the
subjects were asked to extend/flex the wrist and open and close the hand
at their maximum to register the active ranges of motion (AROM). Finally,
maximum tolerated amplitudes were registered for posterior and anterior areas
by activating a single field in each area and increasing the amplitude up to
the subject’s tolerance level. The selected fields for determining maximum
amplitude limits were chosen as the fields that got rated as most painful on
average on experiments presented in chapter 5. These corresponded to the most
proximal-lateral field (field 4) for the posterior forearm and most medial and
halfway-distal field (field 12) for the anterior forearm.

Finally, the data collection stage took place. In this phase the subject was
asked to not make any voluntary movements and to relax the forearm and hand
while the forearm was kept in neutral position. The stimulation consisted of 4
repetitions of randomly activating all the fields of the two electrode matrices.
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Each field started at 20 mA and increased in steps of 1 mA and 1 second of
duration until the amplitude limit for that subject was reached. The starting
point was set to 20 mA to speed up the process because no motor response was
observed below 25 mA in either subject. The sequence followed an order, which
was activation of fields located over the extensors first and activation of fields
located over the flexors next with approximately 10 seconds of rest between
each field, and 1 minute of rest between the repetitions. These frequent and long
resting periods were applied to avoid fatigue interfere in this preliminary study.
If the subject felt discomfort at any time during the experiment, the stimulation
was stopped for the corresponding forearm area and stimulation continued in
the next stage. A flowchart describing the data collection sequence in shown in
Figure 8.3.

8.2.3 Neuro-fuzzy models

Two neuro-fuzzy models were tested with the data collected in this experi-
ment. The first model consisted of the CANFIS hybrid neuro-fuzzy structure,
described in the previous chapter, which is an adaptation of the broadly used
ANFIS structure for MIMO systems. This model was selected because it was
the most used neuro-fuzzy system in other FES applications. The second model
consisted of a Recurrent Fuzzy Neural Network (RFNN). This model was
chosen because like the CANFIS, it is a hybrid approach that has the learning
capacity of ANN and the linguistic interpretability of fuzzy systems. Moreover,
it is a dynamic network, as its structure contains recurrent connections, and so,
has shown successful results when dealing with non-linear dynamic applications
[159, 160, 161]. The structure of the CANFIS structure was shown in Figure
7.11 in the previous chapter, and the structure of the RFNN used in this tests,
which is the one proposed in [160], is shown in Figure 8.4.

As it can be seen in the scheme, it includes an internal recurrence in the
second layer, which brings the ability of temporarily storing information of
previous states. Similar to the CANFIS layer structure defined in the previous
chapter, the first layer applies the membership functions to the inputs and the
second layer emulates the rules. However, the normalization and consequent
layers of the CANFIS do not apply to the RFNN. In the RFNN case, the
last layer performs a linear combination of the values obtained by the rules
multiplied by the link weights, which are tuned by the learning algorithm [160].
Thus, both systems are hybrid neuro-fuzzy systems, able to adapt the parameters
of the membership functions to minimize the error between the network outputs
and desired outputs. However, the CANFIS adapts the consequent parameters
as well, whereas the RFNN adapts the link weights.



92 Chapter 8. Neuro-fuzzy model - Part 1

Figure 8.3: Data collection session flowchart.

We wanted to train a forward model that was able to predict finger and
wrist flexion/extension from stimulation amplitudes and activation sites on the
forearm, therefore, models were provided with 3 inputs and 6 outputs. One of
the inputs represented the amplitude, and the other two inputs represented the
coordinates of the activated field on the arm in proximal-distal and medial-lateral
dimensions. Regarding the outputs, they represented the flexion/extension of
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Figure 8.4: RFNN scheme.

wrist and fingers. Indeed, apart from the proposed structure with 3 inputs and
6 outputs, an additional approach with a fourth input consisting on the wrist
feedback was tested with both systems. The aim was to see if the models
improved when a feedback from the output was included in the structure. In
this case, only the wrist feedback was used because additional feedback would
mean an increase on the network size and because wrist was considered to carry
the most important information regarding hand kinematics. Figure 8.5 shows
the scheme used for the training with both approaches.

Figure 8.5: Model training schemes, top: no feedback, bottom: wrist feedback.
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8.2.4 Data

As stated previously, the 3 inputs provided information of stimulation intensity
and application site, whereas the 6 outputs provided flexion/extension values of
the wrist and 5 fingers. The only data preprocessing carried out before training
consisted in scaling. Data was scaled in order to handle similar magnitudes
and support a better training of the models. The input that represented the
amplitude was scaled by being 1 the maximum amplitude tolerated by the
subject and 0 being the absence of current. The input corresponding to the
proximal-distal dimension was represented by being zero the reference point
located at the elbow and being 1 the most distal row. In the case of the lateral-
medial dimension, data was scaled to the range (-1,1), where negative values
represented fields over the posterior forearm and positive values fields over the
anterior forearm. Zero value or reference value referred to the ulna area. An
illustration of scaled distal and medial coordinates is shown in Figure 8.6.

Figure 8.6: Coordinates on distal and medial dimensions, where the field with
coordinates (0.75,0.5) is highlighted as an example.

Regarding the outputs, the finger flexion percentages provided by the glove
were scaled by being 0 the minimum flexion and 1 the maximum flexion,
according to PROM values. The wrist angles were scaled to the range (-1,1)
over the PROM, where negative and positive values represented extension and
flexion positions respectively.

Once data was scaled, 80% of the samples were used for training, whereas
the remaining 20% were used for validation.
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8.2.5 Model training

As the aim of the present experiments was to check the feasibility of using
neuro-fuzzy models, a basic qualitative ad-hoc analysis was carried out to select
appropriate model parameters for these preliminary neuro-fuzzy models. In all
the cases the models were trained with gradient descent BP.

Once data was collected and scaled, 50% of the training data (40% of
the total data) was trained with different model parameters for each subject.
The model parameters included the learning rate η , the number of input terms
and the membership function initialization. Two learning rate values η = 0.1
and η = 0.01 were tested resulting in better qualitative results with η = 0.1
for both subjects. Membership functions were selected as Gaussian functions
and two initialization methods were tested, which were an online initialization
method [162] and the uniform distribution of the membership functions along
the input space. The latter gave better qualitative results for both subjects.
Finally, regarding the membership layer, from 5 to 10 numbers of input terms
were tested for each subject. Best qualitative results were obtained with 10
input terms for Subject 1 and 7 input terms for Subject 2.

8.3 Results

The results shown in this section correspond to the model parameters selected
in the previous qualitative analysis, which were a learning rate η = 0.1, 10
input terms for Subject 1, 7 input terms for Subject 2, and gaussian membership
functions initiated uniformly distributed throughout the input space.

8.3.1 No feedback approach

Training the CANFIS and RFNN systems without any feedback information
resulted in the behavior shown in Figures 8.7 and 8.8 for Subject 1, which
represent training and validation periods respectively. Similarly, Figures 8.9
and 8.10 represent training and validation periods for Subject 2. As an illus-
tration, wrist and one finger (index) outputs are shown, but the behavior was
similar for all outputs. It can be seen that training data was approximated by
both approaches on both subjects. However, peaks were present throughout
the predicted data, which were more prominent with the CANFIS approach.
Regarding the validation case, better predictions were obtained for Subject 1
than for Subject 2 by both approaches.

Tables 8.1 and 8.2 show the MSE of the scaled values of CANFIS and
RFNN results respectively. We could see that higher peak values of CANFIS in
the learning period resulted in higher MSE values, whereas MSE differences
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Figure 8.7: No feedback training results - Subject 1.

Figure 8.8: No feedback validation results - Subject 1.
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Figure 8.9: No feedback training results - Subject 2.

Figure 8.10: No feedback validation results - Subject 2.
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were small and dependent on subject and output type in the case of validation
period.

Table 8.1: CANFIS MSE - no feedback approach

Subj. Wrist Thumb Index Middle Ring Little

Training

1 1.0166 0.0154 1.0665 0.0160 0.0625 0.5526
2 0.0796 0.3702 2.2323 4.923 0.7771 4.2618

Validation

1 0.0143 0.0004 0.0012 0.0001 0.0035 0.0058
2 0.0169 0.0005 0.0056 0.0004 0.0009 0.0015

Table 8.2: RFNN MSE - no feedback approach

Subj. Wrist Thumb Index Middle Ring Little

Training

1 0.0041 0.0004 0.0031 0.0011 0.0014 0.0017
2 0.001 0.0009 0.0013 0.0038 0.0004 0.0018

Validation

1 0.0123 0.0005 0.0014 0.0003 0.0005 0.0034
2 0.0238 0.0003 0.0082 0.0024 0.0003 0.0059

8.3.2 Wrist feedback approach

Training the CANFIS and RFNN systems with the wrist feedback resulted in the
behavior shown in Figures 8.11 and 8.12 for Subject 1, which represent training
and validation periods respectively. Similarly, Figures 8.13 and 8.14 represent
training and validation periods for Subject 2. Once more, the training data was
approximated by both approaches on both subjects, and peak values produced
by CANFIS had lower values than in the previous case. Regarding the validation
period, worse predictions than in the previous case were observed. None of
the both approaches captured the system characteristics properly, specially the
CANFIS case, which for Subject 2 predicted values above the maximum scaled
value 1.

Tables 8.3 and 8.4 show the MSE of the scaled values of CANFIS and
RFNN results respectively. Once again, peak values of CANFIS in the learning



8.3 Results 99

Figure 8.11: Wrist feedback training results - Subject 1.

Figure 8.12: Wrist feedback validation results - Subject 1.
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Figure 8.13: Wrist feedback training results - Subject 2.

Figure 8.14: Wrist feedback validation results - Subject 2.
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period resulted in higher MSE than RFNN. In the validation period, RFNN
showed smaller MSE values for all outputs and both subjects, however, as
already mentioned, it was not able to capture the system characteristics as well
as in the previous case.

Table 8.3: CANFIS MSE - wrist feedback approach

Subj. Wrist Thumb Index Middle Ring Little

Training

1 0.0108 0.0634 0.5291 0.2514 0.1791 0.1721
2 0.0007 0.0024 0.2550 1.3505 0.2805 1.5714

Validation

1 0.1411 0.0036 0.0028 0.0003 0.0024 0.0061
2 4.96 0.1113 0.0041 0.0050 0.0228 0.0535

Table 8.4: RFNN MSE - wrist feedback approach

Subj. Wrist Thumb Index Middle Ring Little

Training

1 0.0029 0.0003 0.003 0.001 0.0011 0.0016
2 0.001 0.0008 0.0011 0.0032 0.0004 0.0016

Validation

1 0.0356 0.0005 0.0008 0.0002 0.0004 0.0045
2 0.0136 0.0004 0.0126 0.0067 0.0005 0.0082

8.3.3 Membership functions
As mentioned in the previous section, membership functions were initialized
uniformly distributed along the input space, and they were modified during
training. Means and standard deviations of gaussian functions were adjusted in
order to adapt to the specific subject. This type of information could bring clues
and knowledge about the system that was being analysed. As an illustration,
the resulting 10 membership functions for each input after training with RFNN
and CANFIS are shown in Figures 8.15 and 8.16 respectively. Both correspond
to Subject 1 and no feedback approach, however, results were similar with the
other subject and other approach.

Membership functions tend to expand in order to wrap those values which
lead to similar results. They tend to become narrower to differentiate between



102 Chapter 8. Neuro-fuzzy model - Part 1

Figure 8.15: Membership functions after RFNN training for Subject 1 and no
feedback approach.

Figure 8.16: Membership functions after CANFIS training for Subject 1 and no
feedback approach.
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values that lead to distinct rule results. Thus, analyzing the membership func-
tions of Figure 8.15, we could point out or extract few conclusions. For example,
one of the membership functions that represented distal position extended al-
most from elbow to middle forearm, which could mean that similar movements
were achieved when any field located in this area was active. The lateral position
showed similar behavior on the posterior forearm side. Conversely, member-
ship functions that represented distal position from middle forearm to wrist
and lateral position on the anterior forearm became slightly narrower. This fact
could tell us that Subject 1 had higher selectivity of FES-induced movements
on the anterior forearm rather than on the posterior side, and on the distal part
of the forearm rather than on the proximal part. In the case of stimulation ampli-
tudes, different membership functions merged and became narrower around 0.9,
which could indicate the motor threshold of the subject. Conversely, one of the
membership function became very wide, representing the lack of movement that
was common to lower amplitude values. It should be noted that membership
functions that represented amplitudes from 0 to 20mA (0-0.5) did not change
because those values were not present in the data used for training, therefore,
membership functions remained unchanged as in initialization.

However, if Figure 8.16 is analyzed, we can see a completely different
behavior. After training with CANFIS, some of the membership functions
expanded to such an extent that gaussian shape could not be observed anymore.
This effect was present in both subjects and both feedback approaches. So,
although CANFIS was able to predict training and validation data up to some
degree, the membership function modifications after training, lack linguistic
(or fuzzy) meaning. Thus, no information could be extracted from these mem-
bership functions. This effect could be a result of bad parameter fitting or
initialization of membership functions. In any case, CANFIS presented the
same behavior for both subjects and both approaches.

8.4 Discussion

The aim of the work presented in this chapter was to check the feasibility
of using a hybrid neuro-fuzzy system for modeling FES-induced hand move-
ments, more specifically, the model aimed at predicting finger and wrist flex-
ion/extension positions from stimulation parameters and a spatial application
site. Two neuro-fuzzy systems, CANFIS and RFNN, and two feedback ap-
proaches were tested on these preliminary results, and showed promising results.
Both systems were able to approximate training data to some extent, although
worse results were found in the validation case, specially for Subject 2. Inclu-
sion of an additional input consisting of wrist feedback led to an improvement
on training data, but it resulted in increased validation errors, specially for
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Subject 2. This effect was the opposite to what was expected, as we faced a
dynamic problem and thus, expected an overall improvement when previous
output information was added as an input. However, it could be an effect caused
by the increase of the structure, which involved a difficulty in the learning stage
because more parameters needed to be tuned; or an overtraining effect, where
adding an output feedback led to better tuning the parameters for training data
and less generalization occurred. Indeed, for both approaches, the presence of
noise or small voluntary movements when no stimulation was applied, could
have disturbed the training of the model and affected performance.

When comparing both neuro-fuzzy systems, there was a difference in the
training data, where CANFIS showed high peaks in all cases, which led to higher
MSE than RFNN. For the validation data, there were no so clear differences
on the approach without feedback, but with wrist feedback, the RFNN showed
better results, specially with Subject 2, where values predicted by CANFIS
exceeded the maximum scaled limits. Moreover, the membership functions that
resulted from training with the RFNN could be used for extracting some general
information of the system, whereas those membership functions obtained with
CANFIS lacked linguistic meaning.

Summing up, these preliminary results showed that hybrid neuro-fuzzy
systems were able to learn main characteristics from data recorded in two stroke
subjects, and could construct membership functions from which combined phys-
iological and stimulation features could be interpreted or extracted. Regarding
neuro-fuzzy system comparison, the RFNN showed more stable and slightly
better overall results than CANFIS system in terms of MSE and membership
functions, specially for the wrist feedback approach. The reason for this could
be that the RFNN is a dynamic network that includes self-recurrences and
therefore, it is more suitable for these type of dynamic nonlinear problems.
These were the first steps towards neuro-fuzzy modeling of FES-induced hand
movements, hence, still much work needs to be done in terms of deeper testing
and analyzing different methods and aspects of neuro-fuzzy systems for the
presented application.

The most significant results of the work described in this chapter were
presented in the XXXVI Jornadas de Automática [163] and in the 9th IFAC
Symposium on Biological and Medical Systems [164].



9. Neuro-fuzzy model - Part 2

In the previous chapter a feasibility study was presented, which showed the
capacity of neuro-fuzzy systems to approximate FES-induced hand movements
of stroke subjects. However, the aim of these models was to support the
design process of subject-specific forearm surface neuroprostheses, as well
as to provide a basis for development of new control techniques. Therefore,
the reliability and accuracy of the models should be high and they should
adapt to different types of subjects and physiologic characteristics. In order
to achieve this, still many aspects of neuro-fuzzy models of FES-induced
movements should be tested. In this chapter, the RFNN system that showed the
best results in the previous chapter was further analyzed and tested with two
different learning methods. The data collected from three stroke subjects and
three healthy subjects was used in order to have a heterogeneous subject sample.
Data collection was again carried out in collaboration with the ADACEN center.

9.1 Materials
As in the previous set of experiments, the materials include a FES system and
a sensor system for measuring wrist and finger flexion/extension, which were
fully controlled by a custom-made GUI built on Matlab Software.

9.1.1 FES system
The FES device that we used in these experiments was theFes:a device shown
in Figure 9.1. This stimulator was a wireless single channel electronic with
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included 32 channel demultiplexer stimulator that provided current-regulated
biphasic stimulation pulses. The output ranges were from 0 mA to 100 mA for
amplitude, from 0 Hz to 100 Hz for frequency, and from 0 µs to 500 µs for pulse-
width. It could be controlled through the incorporated touchpad or remotely via
Bluetooth.

Figure 9.1: Fes:a system: a) stimulator, b) garment and electrodes, and c) full
system donned, including sensors.

The Fes:a stimulator was able to control up to two 16-field IntFES elec-
trodes (32 fields in total), and as with the stimulators described previously,
amplitude and pulse-width of each field could be independently controlled. For
these experiments a pseudo-matrix electrode formed by 32 fields and two return
electrodes, based on the regular matrix described in chapter 5, was designed
to be embedded into a garment, as shown in Figure 9.1b. The garment with
integrated electrodes ensured proper electrode-skin contact and simplified sig-
nificantly the donning process. The whole FES system together with the sensor
system is shown in Figure 9.1c.
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9.1.2 Sensor system

The sensor system for measuring hand and finger flexion/extension was the
same as the one described in the previous chapter. An instrumented glove
was used for measuring flexion/extension of fingers, and two inertials sensors
were used for measuring wrist flexion/extension as shown in Figure 9.1c. The
details of the system are given in the previous chapter. Data were recorded at a
sampling frequency of 10Hz.

9.2 Methods

The objective of this set of experiments was to further analyze the performance
of a RFNN system for modeling FES-induced hand movements in subjects
with different characteristics. For this purpose, FES-induced hand movement
data was collected from three healthy subjects and three chronic acquired brain
injury subjects. The model was trained with different parameters, different
structures and different learning methods and their effect was analyzed. The
protocol for the data acquisition session was approved by ADACEN and all
participants signed an informed consent.

9.2.1 Subjects

Data from three healthy subjects and three chronic acquired brain injury subjects
were collected in order to test the model with an heterogeneous group. The three
chronic acquired brain injury patients were suffering from a left hemiparesis.
Age and time from injury of all is summarized in Table 9.1.

Table 9.1: Subjects

Subject Gender Age Brain injury cause Time from injury

1 Female 27 - (healthy) - (healthy)
2 Male 29 - (healthy) - (healthy)
3 Male 38 - (healthy) - (healthy)
4 Male 53 Trauma 4 years
5 Female 65 Stroke 4 years
6 Female 61 Stroke 10 years

All the participants were familiar with FES, as each of them had received
at least 60 hours of electrical stimulation during the month prior to the data
collection session.
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9.2.2 Main session

The data acquisition was carried out in one session of approximately 45 minutes
overall duration. The parameters during the whole session were set to 25 Hz
frequency and 200 µs pulse-width. The first stage consisted in donning the
electrodes and sensor system on the subject’s arm, where the garment was
attached taking the ulna as a reference. Then the instrumented glove was
donned. Figure 9.1c shows the arm of a subject after the donning phase. After
the donning, the calibration stage took place, which was the same procedure
as the one described in detail in the previous chapter. The subject was seated
in a chair and rested his arm on top of a table with an elbow angle of 90
degrees. The forearm was rested on a pillow and was kept in neutral position
throughout the whole experiment. Finally, PROM and AROM values were
recorded, followed by maximum tolerated amplitudes for posterior and anterior
parts of the forearm.

In the data collection stage the subject was asked to not make any voluntary
movements and to relax the forearm and hand while the forearm was kept in
neutral position. The stimulation consisted of repeated random activation of
the 32 electrode-fields with different amplitude patterns shown in Figure 9.2 to
cover the full range of amplitudes (0 mA to maximum amplitude tolerated by
each subject), including both ramps and steps.

Figure 9.2: Amplitude patterns applied in the data acquisition session.

The amplitude patterns are represented in percentages with respect to the
maximum amplitude tolerated by the subjects. Resting periods, also shown
in Figure 9.2, were introduced between stimulation periods in order to avoid
fatigue affecting the experiment. Data corresponding to stimulation patterns
from Figure 9.2a to 9.2g were used for training, whereas data obtained by
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applying the pattern shown in Figure 9.2h were used for testing. If the subjects
indicated discomfort with a specific field, stimulation was immediately stopped
and the session continued with the activation of the next field.

9.2.3 Data
The input/output approach was the same as the one presented in the previous
chapter, consisting of three inputs and six outputs. The inputs represented the
amplitude and the spatial coordinates on distal and medial dimensions, as shown
in Figure 8.6, and the six outputs were the flexion/extension of the wrist and
five fingers. However, in the experiments carried out on the previous chapter we
realized that noise or small movements made during the resting periods could
be affecting the learning process. Therefore, this time, data recorded by sensors
were preprocessed before the training was carried out. First, all values were
scaled to PROM values, and then, a smoothing of the signal with a moving
average window of 9 samples was carried out. Finally, as our main concern was
the behavior of the system when stimulation was applied, the offset or values
at the resting periods were removed. Like this we focused on the stimulation
periods and avoided noise or small movements happening at resting periods
to disturb the training of the model. As a result, the six outputs were held in
the -1 to 1 range, where negative and positive values represented extension and
flexion positions respectively. An example of the result of this process is shown
in Figure 9.3.

Figure 9.3: Data preprocessing example, showing scaled, smoothed and final
data with resting periods removed.
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9.2.4 Model training

Based on the results from previous chapter, the RFNN system was chosen for
training. The previously presented RFNN was tested with different structure
approaches for each subject. These involved different numbers of fuzzy terms,
different feedback approaches and combinations of them. The aim of making
this analysis was to find the best structure of the RFNN for modeling FES-
induced hand movements of subjects with different characteristics.

Regarding number of fuzzy terms, in the RFNN, like in the previously
described fuzzy systems, each of the inputs was defined by a number of fuzzy
terms, which, in this case, were represented by gaussian membership functions.
3 to 7 numbers of fuzzy terms were tested in this case. The lower limit was set
to 3 because clearly different behavior is present in at least three stimulation
areas on the forearm. These are the posterior forearm, the radial part and the
anterior forearm, which present different neuromuscular anatomy as described
in chapter 2. The upper limit was set to 7 because we thought that 7 fuzzy
terms were enough to describe each of the three inputs: amplitude, distal
position and medial position. Higher number of fuzzy terms significantly
increase the network structure, number of parameters and computational cost.
Regarding the feedback approaches, as in the previous chapter, we assumed that
providing the system with additional inputs with previous output information
would improve or support the RFNN results because we were dealing with
a dynamic application. However, adding a feedback for each of the outputs
implies a big increase on the network structure, number of parameters and
computational cost. Therefore, we decided to test the RFNN with a limited
amount of feedback combinations that included wrist, index and ring finger
feedbacks. This selection was done taking into account the independence of
the digits and wrist [165]. Seven feedback approaches were tested in total,
which implied: one with no feedback, three with a single feedback (wrist, index,
ring), two with two feedbacks (wrist and index, wrist and ring) and one with
three feedbacks (wrist, index and ring). Figure 9.4 shows the general schemes
of training and validation stages with the feedback approach. Thus, the 35
different combinations of numbers of fuzzy terms and feedback approaches
were tested with each subject.

Finally, apart from the effect of structure parameters, the learning method
was also analyzed. BP based on gradient descent is a commonly used learning
algorithm because of its simplicity and low computational cost. However, it can
miss the optimal solution by being stuck in a local minimum [133]. Therefore,
and due to the success of the combination of RFNN and DE in other applications
[166, 167], we decided to carry out the training for all the cases and all the
subjects with both BP and DE learning strategies.
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Figure 9.4: Schemes for a) training and b) validation.

9.3 Results

The model performance was evaluated with two complementary values. First
of them was the average MSE value of the six outputs, and the other one was
the success rate value. The success rate value was defined as the percentage of
successful predictions over all the stimulation periods, and it was obtained by
comparing the maximum/minimum values of the peaks/valleys resulting from
each stimulation period to their corresponding predicted values. A successful
prediction was assumed when the absolute error between the recorded and the
predicted peak/valley values was less than 5% of the output range.

9.3.1 Backpropagation
BP was carried out with learning rate η = 0.01 and 100 epochs for all the cases,
determined in preliminary qualitative tests where most subjects were found to
converge towards the desired behavior. Membership functions were gaussian
functions and they were initialized uniformly distributed along the input space
for all cases as well.

For space issues, the results of the 35 cases for each of the six subjects
cannot be shown. However, an example of an intermediate case is shown in
Figures 9.5 and 9.6, which correspond to Subject 4 (brain injured subject) when
the RFNN was trained with 3 fuzzy terms and wrist and ring finger feedback,
resulting in a training success rate of 99.65% and validation success rate of
80.56%. Figure 9.5 shows a portion of the training data, where the recorded data
and predicted outcomes are shown, with green circles representing successful
predictions of each stimulation period and red crosses representing unsuccessful
ones. Similarly, Figure 9.6 shows the validation results. If we analyze the figures
qualitatively, it can be noted that for the selected subject and case, training data
were successfully approximated by the RFNN for most stimulation periods.
However, the model failed to correctly predict the response of the middle, ring
and little fingers for some stimulation periods for validation data.
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Figure 9.5: BP training results – Recorded vs. Predicted outcomes for 3 fuzzy
terms and wrist+ring feedback case for Subject 4. Successful predictions are
represented with a green dot and not successful ones with a red cross.
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Figure 9.6: BP validation results – Recorded vs. Predicted outcomes for 3
fuzzy terms and wrist+ring feedback case for Subject 4. Successful predictions
are represented with a green dot and not successful ones with a red cross.
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Table 9.2 summarizes the results obtained in the 35 cases by showing mean,
best and worst average MSE, and success rates for each of the subjects. This
table only shows the results for the validation data. Regarding the training
data, mean success rates for the 35 cases of the six subjects were in the range
87.81%-99.68%, best cases in the range 92.84%-100% and worst cases in the
range 78.26%-99.21%.

Table 9.2: BP validation results

Subjects Mean Best case Worst case

1 0.00464 0.00301 0.00879
2 0.00153 0.00049 0.00353

Average MSE 3 0.00081 0.00028 0.00255
4 0.00846 0.00592 0.01099
5 0.00018 0.00003 0.00147
6 0.00787 0.00228 0.02384

1 61.75% 77.78% 44.44%
2 90.63% 97.22% 83.33%

Succes Rate 3 92.70% 97.22% 83.33%
4 80.48% 88.89% 75%
5 98.65% 100% 91.67%
6 60.32% 88.89% 30.56%

At a first glance, it can be observed that there was a high variation in the
average MSE values and success rates across different subjects. Four sub-
jects showed successful results with mean success rates comprised between
80.48% and 98.65%, best success rates between 88.89% and 100% and worst
success rates between 75% and 91.67%. However, poor results were obtained
for Subject 1 and Subject 6, which were a healthy and a brain injured subject
respectively and resulted in mean success rates of 61.75% and 60.32% respec-
tively. Best success rate for Subject 1 was 77.78%, corresponding to four fuzzy
terms and no feedback case, and worst success rate was 44.44% corresponding
to three fuzzy terms and wrist and index feedback. Similarly, Subject 6 achieved
the best success rate of 88.89% in the seven fuzzy terms and ring feedback
case, and the worst success rate of 30.56% for the five fuzzy terms and wrist
feedback case.

For analyzing the effect of the number of fuzzy terms, a non-parametric
Friedman test was carried out for each of the subjects. The purpose was to
find if there were statistically significant differences among the validation
average MSE values obtained by training the RFNN with different numbers of
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fuzzy terms. Significance level was set to α = 0.05 and for post-hoc analysis
the Bonferroni correction method was applied. Figure 9.7 shows the average
MSE values of each subject grouped by number of fuzzy terms in a boxplot
configuration. Significant differences between groups were only found in two
of the subjects, in which the performance was completely opposite. One of
them presented lower average MSE values with less fuzzy terms, whereas the
other one showed the opposed effect.

Figure 9.7: BP validation average MSE grouped by fuzzy terms. Significantly
different groups are represented with different colors.

A similar procedure was carried out to find if there were statistically signifi-
cant differences among the different feedback approaches. Figure 9.8 shows the
validation average MSE values of each subject grouped by feedback approaches.
Significant differences between groups were found in five out of six subjects by
the Friedman test. However, in some cases the Bonferroni correction method
was too conservative to find which groups were statistically different. This was
probably due to the small data sample and the high number of groups to be
compared. Nevertheless, it can be easily seen that there are differences in the
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average MSE values across different groups. However, these did not follow a
common trend across different subjects. Indeed, feedback approaches which
resulted in low average MSE values in some subjects resulted in high average
MSE values in others.

Figure 9.8: BP validation average MSE grouped by feedback approaches, with
W=wrist, I=index and R=ring. Significantly different groups are represented
with different colors.

Finally, the difference in performance between healthy and brain injured
subject groups was analyzed by carrying out a Kruskal-Wallis analysis on
validation average MSE values. The result showed a significant difference
between both groups, showing lower validation average MSE errors on the
healthy group than on the brain injured subject group as it is shown in Figure
9.9.
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Figure 9.9: BP validation average MSE grouped by subject type.

9.3.2 Differential Evolution

Same analysis as the one with BP was carried out with DE training strategy.
However, due to computational costs and memory requirement issues, only
the cases comprising 3 to 5 fuzzy terms were analyzed, which reduced the
number of cases from 35 to 21. An increase of fuzzy terms resulted in a larger
structure and higher number of parameters to be tuned. As the DE is based
on populations of parameter vectors, it turned out to be a problem for high
numbers of fuzzy terms. However, additional inputs corresponding to different
feedback approaches did not increase the number of parameters so much, so
all the feedback approaches were tested. The DE training parameters for all
the cases were set as F = 0.7 and Cr = 0.9, population size was set to 80, the
number of epochs was 100, and the DE strategy chosen was the DE/target-to-
best/1/bin, which usually converges faster than the most classical version of DE
[139]. Two cost functions were used in this DE: the average MSE value and
the failure rate. The failure rate was the opposite of the success rate, and the
selection was carried out as

Xi,new =

{
Ui if mse(Ui)≤ mse(Xi) and f ailrate(Ui)≤ f ailrate(Xi)
Xi otherwise
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(9.1)

where, mse and f ailrate were the MSE and failure rate cost functions respec-
tively.

Unlike BP, DE is iniatilized by a population of randomly chosen vectors of
parameters. Therefore, the membership functions used were gaussian functions,
but their parameters were randomly initialized with values comprising from -1
to 1. To avoid bad performance results due to a bad initialization, 10 training
trials for each of the cases were carried out. So, for each of the subjects 10
training trials for each of the 21 cases were tested, resulting in 210 training
trials for each of the subjects.

As an example, the same case as in the previous section is shown in Figures
9.10 and 9.11, which correspond to Subject 4 when the RFNN was trained
with DE and 3 fuzzy terms and wrist and ring finger feedback, resulting in a
training success rate of 95.31% and validation success rate of 77.78%. Figure
9.10 shows a portion of the training data, where the recorded data and predicted
outcomes are shown, with green circles representing successful predictions
and red crosses representing unsuccessful ones. Similarly, Figure 9.11 shows
the validation results. If we analyze the figures, it can be noted that for the
selected subject and case, predictions failed more often than with BP, specially
for the validation case, where the only successful predictions corresponded to
stimulation periods where no movement occurred.

Table 9.3 summarizes the results obtained in the 210 training trials for each
subject by showing mean, best and worst average MSE values and success rates.
This table only shows the results for the validation data. Regarding the training
data, mean success rates for the total of training trials of the six subjects were
in the range 83.59%-98.22%, best cases in the range 85.55%99.21% and worst
cases in the range 82.03%-97.75%.

Like in the previous case, it can be observed that there was a high variation
in the average MSE values and success rates across different subjects. Five
subjects showed acceptable results with mean success rates comprised between
74.79% and 97.35%, best success rates between 83.33% and 100% and worst
success rates between 61.11% and 97.22%. However, Subject 1 got slightly
lower results, with mean success rate 65.19%, best success rate 72.22% and
worst success rate 61.11%. Although in general, performance was a bit lower
than with BP, there were no extremely bad cases as we found with BP, with
30.56 and 44.44% success rates.

As in the previous section, a non-parametric Friedman test was carried out
for each of the subjects to analyze the effect of the number of fuzzy terms.
Significance level was set to α = 0.05 and for post-hoc analysis the Bonferroni
correction method was applied. Figure 9.12 shows the average MSE values
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Figure 9.10: DE training results – Recorded vs. Predicted outcomes for 3 fuzzy
terms and wrist+ring feedback case for Subject 4. Successful predictions are
represented with a green dot and not successful ones with a red cross.
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Figure 9.11: DE validation results – Recorded vs. Predicted outcomes for 3
fuzzy terms and wrist+ring feedback case for Subject 4. Successful predictions
are represented with a green dot and not successful ones with a red cross.
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Table 9.3: DE validation results

Subjects Mean Best case Worst case

1 0.00375 0.00292 0.03192
2 0.00356 0.00264 0.00394

Average MSE 3 0.00177 0.00034 0.18772
4 0.01163 0.00713 0.22101
5 0.00021 0.00004 0.00028
6 0.00552 0.00378 0.04254

1 65.19% 72.22% 55.56%
2 86.04% 94.44% 83.33%

Succes Rate 3 92.35% 97.22% 63.89%
4 76.36% 88.89% 66.67%
5 97.35% 100% 97.22%
6 74.79% 88.33% 61.11%

of each subject grouped by number of fuzzy terms in a boxplot configuration.
Significant differences between groups were only found for Subject 2. The
post-hoc analysis with Bonferroni correction failed to point out which groups
were significantly different.

A similar procedure was carried out to find if there were statistically signifi-
cant differences among the different feedback approaches. Figure 9.13 shows
the validation average MSE values of each subject grouped by feedback ap-
proaches. Again, significant differences between groups were found in five out
of six subjects by the Friedman test. However, the Bonferroni correction method
resulted too conservative to find which groups were statistically different. This
was probably due to the small data sample and the high number of groups to be
compared. Nevertheless, as in the BP case, there was not a clear trend across
different subjects.

Finally, the difference in performance between healthy and brain injured
subject groups was analyzed by carrying out a Kruskal-Wallis analysis on
validation average MSE values. The result shown in Figure 9.14 was similar to
the BP case, showing a significant difference between both groups and lower
validation average MSE errors on the healthy group than on the brain injured
subject group.

9.3.3 Backpropagation vs. Differential Evolution

Finally, in order to compare the performance of both learning strategies, a
Kruskal-Wallis test was carried out on validation average MSE and validation
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Figure 9.12: DE validation average MSE grouped by fuzzy terms.

Figure 9.13: DE validation average MSE grouped by feedback approaches,
with W=wrist, I=index and R=ring.
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Figure 9.14: DE validation average MSE grouped by subject type.

success rate values for each subject. Results grouped by learning strategy are
shown in Figures 9.15 and 9.16, where MSE and success rate values are shown
respectively. Significant differences were found on most subjects between
learning methods. For Subject 1 DE showed better results, but for Subjects
2, 4 and 5, BP showed better results. For Subject 3 there were no significant
differences between methods and for Subject 6 a significant improvement only
in success rates was found with DE.

9.4 Discussion
In this chapter, an analysis of the RFNN approach for modeling FES-induced
hand movements has been presented. It has been based on data collected from
three healthy and three brain injured subjects. The RFNN has been trained
with different combinations of fuzzy terms and feedback approaches, as well
as different learning strategies. Results obtained with both strategies showed
a great inter-subject variability on the effect of fuzzy terms and feedback ap-
proaches. From this we conclude that there is not a specific structure that works
best for all, as best structure parameter combinations are greatly dependent on
subject-specific data characteristics. Thus, depending on the desired accuracy,
a subject-specific structure parameter tuning stage is recommended to select
best structure parameters for each subject. Healthy subjects got significantly
lower validation average MSE values than brain injured subjects. This could
be a result of the increased response to FES that is present in healthy subjects
compared to brain injured subjects, which would result in a richer training data
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Figure 9.15: Validation average MSE grouped by learning strategy. Significantly
different groups are represented with different colors.

Figure 9.16: Validation success rates grouped by learning strategy. Significantly
different groups are represented with different colors.
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set, and thus, better results. Finally, the comparison between BP and DE showed
that in most subjects BP achieved significantly better validation results than
DE. However, worst cases obtained on Subject 1 and Subject 6 with BP were
worse than those obtained with DE for the same subjects. The reason could be
that BP converged to a local minimum in certain cases. To avoid this effect, a
hybrid approach could be tested in future experiments, where DE is applied for
some iterations followed by BP. Like this, advantages of both strategies may be
merged.

To sum up, taking into account the complexity of the application, we can
conclude that BP showed better results than DE and it is computationally less
expensive, therefore it is the preferred method. Although in some specific
cases poor results were obtained, all the subjects showed results with success
rates on the range 77.88% to 100% in at least one of the cases with BP and
72.22% to 100% with DE. We believe that results are positive as the RFNN
shows the capacity of approximating the response to FES for all subjects, which
comprised two groups with completely different characteristics (healthy and
brain injured subjects). Further work could include the testing of different
neuro-fuzzy structures, the design of a fast parameter tuning method, a bigger
subject sample or other training strategies.

The most significant results obtained with the BP approach described in
this chapter were submitted to the special issue Advances in FES Modeling &
Control of the peer-reviewed Medical Engineering & Physics journal [168].





10. Conclusions

The aim of the present thesis was to apply intelligent computing techniques
for modeling hand movements induced by surface FES neuroprostheses. Main
challenges of the present application relate to the biomechanical complexity of
the hand and wrist and the difficulty of selectively exciting the desired motor
nerves by surface FES. Indeed, this selectivity issue results in an undesired
excitation of afferent nerves corresponding to cutaneous receptors, which can
cause pain or discomfort in some cases. For this reason, an analysis in order to
find less painful stimulation methods and less painful arm areas was carried out
first, followed by an analysis of using neuro-fuzzy modeling for FES-induced
hand movements.

Two different experiments, described in Chapters 4 and 5, were carried
out in order to analyze pain or discomfort caused by surface FES. The aim of
the first experiment was to compare different stimulation methods to find the
one that produces less discomfort, whereas the second experiment aimed at
identifying potentially painful arm areas to the application of surface FES. The
first experiment, presented in Chapter 4, was motivated by the lack of studies
regarding discomfort caused by stimulation techniques that new multi-field
electrodes make possible. Asynchronous and synchronous stimulation methods
and different electrode-field configurations were tested and compared in order
to find a method that could ensure good performance producing as lowest
discomfort as possible. This was carried out by recording wrist forces and
pain ratings from 15 healthy subjects while different stimulation methods and
electrode-field configurations were applied. Results showed that synchronous
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stimulation produced significantly higher deep discomfort than asynchronous
stimulation when distant fields were activated, which limited the performance
of the system, failing to reach the target in many subjects. This effect could
be caused by higher current densities present on the return electrode with
synchronous stimulation than with asynchronous stimulation, which could
result in the activation of a bigger amount of afferent fibers corresponding
to deep cutaneous receptors. On the other hand, asynchronous stimulation
showed stable discomfort rates and successful attempts for all the cases. Taking
into account the results, and the previously reported benefits on fatigue and
selectivity of asynchronous stimulation [29, 30], we assumed that it was the
best method tested so far with multi-field electrodes in terms of discomfort, so
this method was used for the rest of the experiments.

After comparing different stimulation methods, the spatial distribution of
discomfort caused by surface FES on the arm was studied and presented in
Chapter 5. The aim of this second experiment on discomfort was to create pain-
maps, which were graphical representations of pain ratings of different sites of
the arm. These could point out painful spots on the arm that should be avoided
or less painful spots that should be preferred for applying FES, which could
be used as a reference for the design of more comfortable neuroprostheses.
Subjects suffering from neural disorders such as stroke usually suffer from
sensory impairments and their discomfort or pain thresholds are different to
healthy subjects [39], therefore this experiment was carried out with 12 chronic
stroke subjects. The experiment consisted of the application of surface FES
at different sites of the arm and the recording of corresponding pain ratings
for each of these areas. The inherent subjectivity of pain [72], and the high
variability among stroke patient pathologies [39] resulted in a high inter-subject
variability of pain-maps. Results showed no significant differences on pain
ratings between fields for forearm areas, but significant differences on pain
ratings between fields on upper-arm areas. This dissimilarity between forearm
and upper-arm areas could come from the physiological differences between
muscles that belong to lower and upper areas of the arm, where bigger muscles
like biceps and triceps required higher amplitudes to generate a contraction,
which could lead to higher discomfort. The most painful areas of posterior and
anterior upper-arm were those located most proximally to the return electrode,
and the least painful fields were those located distally from the return electrode.
One of the reasons for recording significantly higher pain ratings at these
fields could be that higher amplitudes were needed to achieve motor threshold
when active fields were too close to the return electrode, causing discomfort.
This phenomenon is caused because most of the current flows through the
superficial layers of the skin, where lower impedance layers like fat are located
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[7, 8], which can result in a bypass of the deeper nerves when the active and
return electrodes are close. In summary, we could conclude that there were
no significantly painful spots along the forearm areas for the application of
FES, but there were significant pain differences between some fields on the
upper-arm that could be caused by electrode configuration. It is therefore
recommended to select the active fields located more distally on the upper-arm
so the current is forced to go deeper in the skin. Pain maps shown in Chapter 5
do easily illustrate recommended areas for the use of FES on upper limb with
the proposed electrode configuration. However, these experiments should be
carried out in a bigger population to draw more relevant conclusions, and in
that case they could be used as a guide or basis for future clinical or research
applications and the design of more comfortable neuroprostheses.

After the discomfort analysis was carried out, experiments for checking
the feasibility of using neuro-fuzzy systems for modeling FES-induced hand
movements were carried out, followed by a study of the effect of different
structure parameters on the performance of these models. Models of FES-
subject systems are essential for designing and testing new control methods of
neuroprostheses without involving patients with neurological disorders in the
design loop. However, these models can be very complex to achieve analytically,
specially in the case of hand movements, due to its anatomical complexity and
high amount of DOF [4, 113, 169]. Therefore, an approach based on neuro-
fuzzy systems was proposed and tested. The aim of the work presented in
Chapter 8 was to check the feasibility of using a neuro-fuzzy approach for
modeling FES-induced hand movements with surface multi-field electrodes.
Two different neuro-fuzzy systems were tested and trained with data collected
from two chronic stroke patients. After collecting data from both chronic stroke
patients, two neuro-fuzzy systems, CANFIS and RFNN, with two different
feedback approaches were trained. The aim of these models was to predict
finger and wrist flexion/extension positions from stimulation parameters and
spatial application site. Both systems were able to approximate training and
validation data. Inclusion of an additional input consisting of wrist feedback
led to an improvement on training data, but it resulted in worse validation
results. This effect was the opposite to what we expected from a nonlinear
dynamic system, as an overall improvement was expected when previous output
information was added to the model structure. However, it could be an effect
caused by the increase of the structure, which involved a difficulty in the
learning stage because more parameters needed to be tuned; or an over-training
effect, where adding an output feedback led to tuning the parameters for the
training data and less generalization occurred. When comparing both neuro-
fuzzy systems, the RFNN showed more stable and slightly better overall results
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than the CANFIS system due to its dynamic character based on self-recurrences,
which makes it more suitable for modeling a dynamic nonlinear system. Indeed,
the membership functions that resulted from training with RFNN could be used
for extracting some general information of the system or subject due to their
linguistic interpretability. Thus, these preliminary results showed that hybrid
neuro-fuzzy systems were able to learn main characteristics from data recorded
from subjects, and could construct membership functions from which combined
physiological and stimulation features could be interpreted or extracted.

After checking the feasibility of using hybrid neuro-fuzzy models for the
present application, a deeper analysis of the effect of different structure pa-
rameters was carried out, which was presented in Chapter 9. The RFNN was
trained with data collected from three healthy and three brain injured subjects.
Different RFNN structures were trained with different combinations of fuzzy
terms and feedback approaches, as well as two different learning strategies
based on gradient descent and evolutionary algorithms. Results obtained with
different numbers of fuzzy terms and feedback approaches showed a high inter-
subject variability. From this we concluded that there was no specific structure
that worked best for all, but that best structure parameter combinations were
greatly dependent on subject-specific data characteristics. Model predictions of
healthy subjects got significantly higher performance than model predictions
from brain injured subjects, which could be caused by the increased response to
FES of healthy subjects during the training data set. Finally, the comparison be-
tween backpropagation (BP) and differential evolution (DE) learning strategies
showed that in most subjects BP achieved significantly better validation results
than DE, and it was computationally less expensive. However, worst cases
obtained with BP were worse than worst cases obtained with DE, which could
be caused by eventual convergence to a local minimum with BP in certain cases.
In any case, the RFNN showed the capacity of approximating the response to
FES for all subjects, which comprised two groups with completely different
characteristics (healthy and brain injured subjects) with best validation success
rates comprised between 77.88% to 100% with BP and 72.22% to 100% with
DE. However, these results were obtained with different structure parameters
for each of the subjects. Taking into account the complexity of the application,
the presented results were positive as a starting point. However, further work
should be carried out to test other neuro-fuzzy systems or structures, other
training strategies, a bigger population sample or other automatic parameter
tuning methods.

In conclusion, the presented thesis has shown the possibility of using in-
telligent control techniques for modeling such a complex system as a surface
neuroprosthesis for hand grasp. Although analytical models have been suc-
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cessfully applied in other FES applications, hand movements imply additional
difficulties mainly due to its dimensionality, which involves a high amount of
DOF. Hybrid neuro-fuzzy approaches have shown their capacity for success-
fully modeling FES-induced hand movements when applied to both healthy and
brain injured patients, while providing linguistically interpretable information
in terms of membership functions. Hence, this work has opened a new research
line that brings new possibilities to the field of surface neuroprostheses for
hand grasp, where intelligent computing techniques should be further analyzed
and tested in the near future in order to develop successful neuroprostheses for
upper-limb neurorehabilitation purposes.

10.1 Limitations

The present work suffered from several limitations of different nature. First
of all, it should be noted that the present thesis is located in the multidisci-
plinary neurorehabilitation area, which required not only technical skills, but
also required deep understanding on different biological processes and neuro-
logical pathologies. Although advice from professionals of the medical field
was taken into account, the thesis was focused more from a technical point
of view, which could result in overlooking some important medical aspects
unintentionally. Another limitation related to the medical implication of the
thesis was the reduced number of neurologically impaired subjects involved in
the experiments. Carrying out experiments that involve patients requires support
from a medical/rehabilitation center or a medical/therapist team. Besides, re-
cruitment of patients, approving clinical protocols and scheduling experiments
with volunteers and clinical professionals is a long time-consuming process that
disturbs both patients and clinical professionals. Therefore, few subjects were
involved in these preliminary tests in order to avoid disturbing a big amount
of volunteers and clinicians until a preliminary conclusion was drawn. From
the technological point of view, other limitations also arose. One of the main
limitations relied on the hand sensor system. In order to obtain more accurate
models and analyze grasps, having a complete and reliable sensor system mea-
suring angles of all DOF on hand and finger joints, velocities, accelerations,
and forces (grasping different weight objects), would help. However, the sensor
system should be wearable and fast to don/doff as well as providing enough
freedom for performing different hand-movements and grasps. Moreover, the
spasticity present in the hand of some neurologically impaired patients makes it
even more difficult to don/doff sensors if hand opening is required. Therefore, a
balance between a complete accurate sensor system and wearability should be
found, which made us select the sensorized glove system described in Chapter
8. The main limitation of the described system relied on the limited information
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given by the finger sensors, where the percentage of curvature of two joints
for each finger was given respect to a predefined value. This was a limitation
specially for the thumb, because the sensor system was not able to capture
the different DOF present in the thumb. Finally, another limitation was that
the performance of the neuro-fuzzy models for FES-induced hand movements
presented here could not be compared to previously proposed models, because
to our knowledge, only one simplified model-based FES-induced grasp control
application has been proposed with multi-field electrodes [130]. However,
stimulation application sites were predefined before the control stage and no
model accuracy results were presented as they focused on control. Therefore,
the results obtained with the proposed model could not be contrasted against
any previously proposed model.

10.2 Future work

Regarding future research, many tasks arise from the presented thesis. With
respect to discomfort, as stated earlier, experiments involving a bigger amount
of subjects would help to draw more relevant conclusions regarding spatial
distribution of discomfort related to FES on the arm. Indeed, two different
stimulation methods were compared, but new stimulation methods such as a
combination of both asynchronous and synchronous stimulation could also be
analyzed in terms of discomfort. Actually, not only discomfort but a perfor-
mance analysis based on motor threshold could also be performed between
different stimulation methods, as the aim of the neuroprostheses is to elicit
muscle contractions and achieve functions. Thus, best stimulation methods
should be defined taking into account the balance between performance and
discomfort. Regarding hybrid neuro-fuzzy modeling, different possibilities
arise. Although a RFNN structure was proposed, other dynamic structures
involving other self-recurrences could also be tested. Besides, the input space
partition was fixed a-priori in the presented models, but having seen that best
structure parameters are dependent on subjects, an online method for defining
the number of fuzzy terms could also be applied. Other learning strategies could
be tested, for example a hybrid approach starting with a global optimization
algorithm such as DE and switching to a local learning algorithm based on
gradient descent like BP, which might merge advantages of both algorithms by
avoiding the BP falling into local minima while speeding up the DE learning.

Finally, it should be noted that the aim of the presented models is to support
the development of successful neuroprostheses for hand grasp neurorehabil-
itation purposes. The obtained models allow us to speed up the design and
development stages of novel control methods without disturbing or affecting
clinicians and neurologically impaired patients. Therefore, new CI techniques
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could also be applied for controlling FES-induced hand grasps. Few FES con-
trol systems have been proposed for hand grasp applications so far. Actually, the
proposed approaches for FES-induced hand grasp are either aimed at implanted
systems [170, 171, 172, 173]; open-loop, which cannot deal with disturbances
or dynamic changes of the system [29, 32, 174]; or use fixed or predefined
electrode applications sites during hand grasp [130, 175, 176]. As stated earlier,
one of the main challenges of surface FES grasping lies in reduced selectivity,
due to the spreading of the current into neighboring tissues of the targeted motor
nerves. Indeed, the relative position of the nerves and the skin change during
arm and hand movements [131, 132]. Thus, the control of both the stimulation
parameters and the spatial application sites of FES during hand movements
would help to achieve more selective grasps. Although this fact adds complexity
to the FES-induced hand grasp control problem, the application of different CI
techniques might deal with its complexity and dimensionality, which could be
more challenging for analytical methods. Due to the dynamic characteristics
of the surface FES-induced grasping and the repetitive goal-oriented therapies
aimed at stroke patients [177], we believe that a Reinforcement Learning (RL)
approach could be used to control FES-induced hand grasps. RL is inspired by
animal or biological learning systems, where the basic idea consists on learning
by means of awards (or punishments) depending on the actions taken. In short,
it is a closed loop goal-directed learning, which explores the environment in
order to find the actions that maximize the rewards. Moreover, RL systems
have shown the capacity of successfully adapting to non-stationary problems
[178, 179, 180]. Therefore, we believe that this control method could fit well to
most common therapeutic applications that are based on repetitive goal-oriented
exercises.
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Acronyms

ANN Artificial Neural Network
AP Action Potential
AROM Active Range of Motion
BP BackPropagation
CI Computational Intelligence
CNS Central Nervous System
CP Cerebral Palsy
DE Differential Evolution
DOF Degrees Of Freedom
EMG ElectroMyoGraphy
FES Functional Electrical Stimulation
GUI Graphical User Interface
IRC Isometric Recruitment Curve
MIMO Multiple Input Multiple Output
MS Multiple Sclerosis
MSE Mean Square Error
MT Motor Threshold
NMES NeuroMuscular Electrical Stimulation
PID Proportional-Integral-Derivative
PNS Peripheral Nervous System
PROM Passive Range Of Motion
RFNN Recurrent Fuzzy Neural Network
RL Reinforcement Learning



154 Acronyms

RNN Recurrent Neural Network
SCI Spinal Cord Injury
USB Universal Serial Bus
VAS Visual Analog Scale
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