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Abstract

Morphological Associative Memories have been proposed for some image
denoising applications. They can be applied to other less restricted domains,
like image retrieval and hyperspectral image unsupervised segmentation. In
this paper we present these applications. In both cases the key idea is that
Autoassociative Morphological Memories selective sensitivity to erosive and
dilative noise can be applied to detect the morphological independence be-
tween patterns. Linear unmixing based on the sets of morphological inde-
pendent patterns de ne a feature extraction process that is the basis for the
image processing applications. We discuss some experimental results on the
“sh shape data base and on a synthetic hyperspectral image, including the
comparison with other linear feature extraction algorithms (ICA and CCA).

1 Introduction

Linear feature extraction algorithms, like Principal Component Analysis (PCA)
[2], Linear Discriminant Analysis (LDA) [2], Independent Component Analysis
(ICA) [7] are defined as a linear transformation that minimizes some criterion
function, like the mean square error (PCA), a class separability criterion (LDA) or
an independence criterion (ICA). The approach we take is to try to characterize the
data by a convex region that encloses them or most of them. The features extracted
are the relative coordinates of the data points in this region. In other words the
result of the linear unmixing relative to the vertices of this convex region. Therefore
the dimensionality reduction depends on the degree of detail of the definition of
this convex region: the number of vertices that describe it. Depending on the
application, the meaning of these vertices varies. In hyperspectral image processing
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they are identified with endmember materials in the linear mixing model. In content
based image retrieval, they correspond to a base of shapes.

We present a computational procedure for the induction of the vertices of a
convex region covering most of the data points. This procedure makes profit of the
selective noise sensitivity of the Associative Morphological Memories (AMM) to
detect the morphological independence conditions that are a necessary condition
of the convex region vertices. In its actual implementation it works in a single pass
over the data sample. The procedure is unsupervised and does not need the explicit
setting of the number of region vertices searched for, although it is determined
indirectly by the setting of the noise filtering parameter . Lower values allow for
higher number of vertices. By construction the maximum number of vertices is two
times the dimension of the data space: only two vertices are allowed at most in
each subspace spanned by each dimension unit vector.

The Associative Morphological Memories [15], [16], [L7] are the morphological
counterpart of the well known Hopfield Associative Memories [5]. AMM’s are
constructed as correlation matrices computed by either Min or Max matrix product.
Dual constructions can be made using the dual Min and Max operators. Recently,
[20] has shown the generalization of binary AMM’s based on fuzzy set theory. The
AMM selective sensitivity to specific types of noise (erosive and dilative noise) is
of special interest to us. It was established that AMM are able to store and recall
morphologically strongly independent sets of patterns. The notion of morphological
independence and morphological strong independence was introduced in [17] to
study the construction of AMM robust to general noise. When the input pattern
is morphologically independent of the stored patterns, the result of recall is a
morphological polynomial on the stored patterns [19]. We construct the erosive
and dilative memories to store the patterns. Any input patters whose recalled
output corresponds to one of the stored patterns in both kind of memories lies
inside the convex region already defined by the stored patterns. Otherwise the
pattern is a new vertex of the convex region enclosing the data. The data patterns
are filtered dilatively and erosively before being binarized to construct and test the
AMM’s.

The first application of our approach is the unsupervised analysis of hyperspec-
tral images. Supervised analysis and classification of hyperspectral remote sensing
data main drawback is the difficulty in obtaining labeled sample data. The scarcity
of ground truth data has been recognized and specific training strategies have been
devised to cope with this handicap [21, 22]. From our point of view, the empha-
sis must be in the unsupervised analysis and segmentation of the hyperspectral
data to obtain salient image regions that may deserve further analysis and search
for labeled data. Most unsupervised segmentation attempts have been based on
clustering algorithms, including artificial neural networks derived from the SOM
paradigm [24]. These approaches either ignore small features of the data or must
be over-parameterized to associate any representative to them. Therefore, it is dif-
ficult for them to detect and isolate small regions of the image with salient spectral
features. In essence, SOM related algorithms are searching for data averages, while
salient feature vectors are outliers of the data cloud. The approach we favor is that
of linear filtering for target detection [10] and the "spectral unmixing” [9] model.
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We assume a linear mixing model, in which several basic materials (endmembers)
are combined according to some abundance coefficients at each image pixel. Taking
its spatial distribution, the abundance coefficients may be visualized as abundance
images, which give a description of material distribution in the space. The compu-
tation of the abundance coeflicients given a pixel spectra and a set of endmembers
is the unmixing procedure. If the endmembers are known a priori, the unmixing
procedure is equivalent to the parallel detection of the spectral features represented
by the endmembers (i.e.: materials). If the endmembers are a priori unknown, but
induced from the image data, the procedure may be interpreted as an unsupervised
segmentation of the image. We test our approach against Convex Cone Analysis
(CCA) and ICA in this problem.

The other application of interest is the content based image retrieval (CBIR)
of shape images [23]. The CBIR problem is that of finding within a set of images
the ones more similar to a given one. The role of the feature extraction algorithm
is to map the images to low dimensional vectors whose topology reflects the visual
similarity between shapes. The shape of the objects is described by the distribution
of a set of significative shape points [1]. The PCA and ICA have been used to
perform dimension reduction on this problem, before applying classifiers (like the
k-NN or naive bayes) to shape recognition. In this paper we will apply our AMM
based approach to the shapes in the Squid System database of fish boundaries [11]
in a simple CBIR experiment. The validation of the approach can not be based in
a quantitative measure, nevertheless the visual results are very positive.

2 Linear mixing model and linear feature extrac-
tion

The linear mixing model [9] can be expressed as follows:

M
X =Y a;s; +W=Sa+w, (1)
i=1
where X is the d-dimension pattern vector, S is the d x M matrix whose columns
are the d-dimension vertices of the convex region covering the data s;,i =1,.., M, a
is the M -dimension fractional abundance vector, and w is the d-dimension additive
observation noise vector. The linear mixing model is subjected to two constraints
on the abundance coefficients. First, to be physically meaningful, all abundance
coefficients must be non-negative a; > 0,7 = 1,.., M. Second, to account for the
entire composition, they must be fully additive Zf\il a; = 1. Once the convex
region vertices have been determined the unmixing is the computation of the matrix
inversion that gives the coordinates of the point inside the convex region. The
simplest approach is the unconstrained least squared error estimation given by:

a=(sTs) 'sTx. 2)

The coefficients that result from this computation do not necessarily fulfill the
non-negativity and full additivity conditions. It is possible to enforce each condi-
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tion separately, but rather difficult to enforce both simultaneously [9]. The added
complexity may render the whole approach rather impractical, therefore we will
use unconstrained estimation (2) to compute the abundance images. In the setting
of hyperspectral image processing, the convex coordinates are interpreted as the
fractional abundance coefficients of the endmember materials in the scene pixel. In
the setting of shape retrieval, the abundance coefficients become the feature vector,
and the similarity measure is the Euclidean distance. In the following we present
the ICA and CCA methods that will be applied in hyperspectral image processing
to compare with our approach. ICA as a linear feature extraction and CCA as an
alternative method for endmember induction for linear unmixing.

2.1 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) [7] assumes that the data is a linear
combination of nongaussian, mutually independent latent variables with an un-
known mixing matix. The ICA reveals the hidden independent sources and the
mixing matrix. That is, given a set of observations represented by a D dimensional
vector X, ICA assumes a generative model X = AS, where S is the M dimensional
vector of independent sources and A is the D x M unknown basis matrix. The ICA
searches for the linear transformation of the data W, such that the projected vari-
ables WX = s are as independent as possible. It has been shown that the model is
completely identifiable if the sources are statistically independent and at least M —1
of them are non gaussian. If the sources are gaussian the ICA transformation could
be estimated up to an orthogonal transformation. Estimation of mixing and un-
mixing matrices can be done maximizing diverse objective functions, among them
the non gaussianity of the sources and the likelihood of the sample. We have used
the FastICA [6] algorithm available at http://www.cis.hut. /projects/ica/fastica.
We have applied it to the abundance computation in hyperspectral images. To
this end we did reshape the hyperspectral images so that each band becomes a
data vector. The endmembers searched for are the columns of the estimated mix-
ing matrix A, and the estimated abundance images are the independent sources
S. Obviously, the number of independent sources M searched for is the number of
endmembers, and D is the number of spectral bands.

2.2 The Convex Cone Analysis (CCA)

The CCA was proposed by [8]. The basic idea is that after PCA of the spectral
correlation matrix, the data falls in a cone shaped region in the positive subspace
centered in the first eigenvector. Given the N x M x D hyperspectral image, it is
reorganized asa NM x D matrix S. The spectral correlation matrix is computed as
C = S7TS. Let it be C = PLPT the PCA decomposition of the correlation matrix,
select the first ¢ eigenvectors [Py, .., P,] = P, and search for the boundaries of the
convex region characterized by X = p;+ai1pP2+.. + ac—1P:.> 0. The vertices of this
region are the points with exactly ¢ — 1 zero components. The CCA algorithm
searches among all the (Cfl) possible combinations of eigenvectors performing the

following test. Let it be [p (V1) - P (%—1” = P’ the selected set of eigenvectors.
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Solve the set of equations P’a =0 and compute X = P.a. If X has exactly ¢ —
1 zero components it is a vertex of the convex region data. In practice, each
component is tested against a threshold. However, as the combinatorial space grows
the problem becomes intractable. We implemented an straightforward random
search. Application of more sophisticated random search algorithms like genetic
algorithms may be of interest for large problems. The CCA algorithm provides the
endmembers that may be used to compute the abundance images.

3 Associative Morphological Memories

The work on Associative Morphological Memories stems from the consideration
of an algebraic lattice structure (R,V,A,+) as the alternative to the algebraic
(R,+,-) framework for the definition of Neural Networks computation [15] [16].
The operators V and A denote, respectively, the discrete max and min operators
(resp. sup and inf in a continuous setting), which correspond to the morphological
dilation and erosion operators, respectively. Given a set of input/output pairs
of pattern (X,Y) = {(x¢,y¢);&=1,..,k}, an heteroassociative neural network

based on the pattern’s cross correlation [5] is built up as W = ye - (Xg)/.
Mimicking this construction procedure [15], [16] propose the following constructions
of Heteroassociative Morphological Memories (HMM’s):

k k

Wxy = /\ {yﬁ X (—xg)/} and Mxy = \/ {yﬁ X (—XE)/} , (3)
=1 £=1

where x is any of the § or R operators. Here 2 and 2R denote the max and
min matrix product, respectively defined as follows:

C=A2 B=lcj]l&cij= \/ {air + b}, (4)
k=1..n

C:AZB:[CM]@C”‘: /\ {aik‘l’bkj}. (5)
k=1..n

If X =Y then the HMM memories are Autoassociative Morphological Memories
(AMM). Conditions of perfect recall by the HMM’s and AMM’s of the stored
patterns are proved in [15],[16]. In the continuous case, the AMM’s are able to
store and recall any set of patterns:

Wxx2X=X=Mxx 2 X, (6)

for any X.

These results hold when we try to recover the output patterns from the noise-
free input pattern. Let it be X” a noisy version of X”. If XY X7 then X7 is an
eroded version of X7, alternatively we say that X" is corrupted by erosive noise. If
X7 > X7 then X" is a dilated version of X7, alternatively we say that X" is corrupted
by dilative noise.
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Morphological memories are selectively sensitive to these kinds of noise. The
conditions of robust perfect recall are proven in [15], [16]. Here we will remember
them for the sake of the reader, because they are on the basis of the proposed
algorithm. Given patterns X, the equality

Wxx 2 X =X (7)

holds when the noise affecting the pattern is erosive X?  X” and the following
relation holds:

E#Y

Vidji; T, =z vV (\/ (arz —af —I—:ri)) . (8)

Similarly, the equality

Mxygiw =x" (9)

holds when the noise affecting the pattern is dilative X” > X7 and the following
relation holds:

iz, =0 | A (a1 s, (10)
EFY

Therefore, the AMM will fail to recall the pattern if the noise is a mixture of erosive
and dilative noise.

To obtain general noise robustness [15], [17], [19] proposed the kernel method.
Related to the construction of the kernels, [17] introduced the notion of morpho-
logical independence. Here we distinguish erosive and dilative versions of this defi-
nition: Given a set of pattern vectors X = (Xl, ey Xk), a pattern vector Y is said to
be morphologically independent of X in the erosive sense if y £ X?;v = {1, ...k},
and morphologically independent of X in the dilative sense if y # X7;y = {1, ..,k}.
The set of pattern vectors X is said to be morphologically independent in either
sense when all the patterns are morphologically independent of the remaining pat-
terns in the set. For the current application we want to use AMM as detectors
of the set extreme points, to obtain a rough approximation of the minimal sim-
plex that covers the data points. We note that given a set of pattern vectors
X = (Xl, ...,Xk) , and the erosive Wxx and dilative Mx x memories constructed
from it, and a test pattern y ¢ X, if y is morphologically independent of X in the
erosive sense, then Wxx 2 y ¢ X. Also, if y is morphologically independent of X
in the dilative sense, then Mxx 2 Y ¢ X. Therefore the AMM’s can be used as
detectors of morphological independence.

The vector patterns that we are searching for define a high dimensional box
centered at the origin of the high dimensional space (the data mean is shifted
to the origin). They are morphologically independent vectors both in the erosive
and dilative senses, and they enclose the remaining vectors. Working with inte-
ger valued vectors, given a set of pattern vectors X = (Xl, s Xk) and the erosive
Wx x and dilative Mxx memories constructed from it, if a test pattern y < X”
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for some v € {1,..,k} then Wxx 2y ¢ X. Also, if the test pattern y > X" for
some v € {1,..,k} then Mxx 2y >¢ X. Therefore, working with integer valued
patterns the AMM will be useless for the detection of morphologically independent
patterns. However, if we consider the binary vectors obtained as the sign of the
vector components, then morphological independence would be detected as sug-
gested above: The already detected endmembers are used to build the erosive and
dilative AMM. If the output recalled by a new pattern does not coincide with any
of the endmembers, then the new pattern is a new endmember.

4 The selection of vertices from the data

The region of the space enclosed by a set of vectors which are morphologically in-
dependent in both erosive and dilative senses simultaneously is a high dimensional
box that approaches the minimal simplex enclosing the data points. Let us define
{f (i) e R%i=1,..,n} the high dimensional data that may be the pixels in a mul-
tispectral or hyperspectral image, or selected points in shape representation,
and % the vector mean and standard deviations computed over the data sample,
a the noise correction factor and E the set of already discovered vertices. The
noise amplitude in (1) is estimated as %, the patterns are corrected by the ad-
dition and subtraction of a%, before being presented to the AMM’s. The gain
parameter a controls the amount of flexibility in the discovering of new endmem-
bers. Let us denote by the expression X > 0 the construction of the binary vector
The steps in the procedure are the following:

1. Shift the data sample to zero mean
{fe@)=Ff()— 1i=1,.,n}.

2. Initialize the set of vertices E = {e;} with a randomly picked sample. Ini-
tialize the set of morphologically independent binary signatures X = {X1} =
{(et >0;k=1,.,d)}

3. Construct the AMM’s based on the morphologically independent binary sig-
natures: Mxx and Wxx.

4. For each pixel f° (7)
(a) compute the noise corrections sign vectorsf™ (i) = (f¢ (i) + o% > 0) and
f= (@)= (f°()—a% >0)
(b) compute yT = Mxx B f* (i)
(c) compute y~ =Wxx 2 f~ (i)

(d) if y* ¢ X or y= ¢ X then f¢(4) is a new vertex to be added to E, go to
step 3 and resume the exploration of the data sample.

(e) if y© € X and f¢ (i) > e, + the pixel spectral signature is more extreme
than the stored vertex, then substitute e,+ with f° (7).
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(f) ify~ € X and f¢ (¢) < e,~ the new data point is more extreme than the
stored vertex, then substitute e,~ with f¢ (7).

5. The final set of vertices is the set of original data vectors f (i) of the sign
vectors selected as members of E.

5 Experimental results

We will first present the results on the unsupervised segmentation of hyperspectral
images, where we compare our approach with the ICA and CCA. The experiment
was done on a synthetic image allowing precise quantitative validation of the results.
Finally we discuss some results on the application of our approach to the shape
similarity computation on the fish contours database.

5.1 The experimental hyperspectral image

In previous works [3, 4] we have presented results on a classical hyperspectral image
reference. Here we have made use of synthetic images to test our approach and the
benchmark CCA and ICA algorithms. This allows a very precise characterization
of the performances because we can compute the correlation between the ground
truth abundance images and the ones induced by the algorithms. The hyperspectral
image used for the experimental results reported here is generated as linear mixtures
of a set of spectra (the ground truth endmembers) with synthesized abundance
images. The ground truth endmembers were selected from the USGS spectral
libraries corresponding to the AVIRIS flights.

CR € — L o =R
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Figure 1: From left to right, plots of the ground truth endmembers extracted from
the USGS library, endmembers induced from the data by our AMM approach,
CCA and ICA

Figure 1 left plot shows the spectra used as endmember in the synthetic images.
The synthetic ground truth abundance images were generated in a two step proce-
dure, first we simulate each as an 2D Legendre polynomial. Legendre polynomials
on 2D and 3D supports have been proposed by [18] for the modeling of illumina-
tion bias in the context of illumination inhomogeneity correction. The [-order 2D
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Legendre polynomial is defined as

I 1-1
b(z,y; {pis}) = D > pis i (z) Pi (y) (11)

i=0 j=0

where P; (z) refers the i-th order Legendre polynomial computed on the z axis.The
P; (z) P; (y) 2D polynomials are orthogonal and constitute a basis of the space of
images.

To ensure that there are regions of almost pure endmembers we selected for
each pixel the abundance coefficient with the greater value and we normalize the
remaining to ensure that the abundance coefficients in this pixel sum up to one.
It can be appreciated on the abundance images that each endmember has several
region of almost pure pixels, viewed as brighter regions in the images. Image size is
64 x 64 pixels of 224 spectral bands each. The left column in figure 2 presents the
ground truth abundance images of the 5 endmember hyperspectral image, which
were generated using Legendre polynomials of order 10 and 11. Note that the last
one which appears black, has a white pixel in the lower right corner. This very
small feature is a rather difficult target for detection.

Figure 2: Abundance images generated with Legendre polynomials of order 10 and
11, used to synthesize a 5 endmember hyperspectral image, and the abundance
images induced by the AMMs, ICA, CCA from the data

An additional reason to choose the Legendre polynomials to synthesize the
ground truth abundance images is that the distribution of the pixel intensities is
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non gaussian. The histograms of the ground truth abundance images in figure 3
show a strong departure from gaussianity. Therefore ICA is in the best of the
scenarios for its application.

Figure 3: Histograms of the ground truth abundance images.

5.2 Experimental results on the hyperspectral image

When applying the ICA and CCA methods we have set the desired number of
endmembers to the exact number of ground truth endmembers. Our AMM ap-
proach needed the setting of the noise gain parameter a. After some trials, we set
a = 0.3 for this synthetic hyperespectral image. Values in the range 0.3 < o < 1.0
produced systematically the detection of 4 endmembers, increasing the value gave
lesser endmembers until only one could be detected. The experiment consisted
on the computation of the endmembers and abundance images induced by each
method and the quality measure was the correlation between the induced and
ground truth images. The induced images were not ordered, therefore we consid-
ered the maximum correlation for each induced abundance image with anyone of
the ground truth abundance images, and we plotted them ordered in figure 4. It
can be appreciated that our approach ”discovered” the ground truth abundances
almost perfectly. It must be said that instances of the algorithm that found less
endmembers produced also high correlation values. Surprisingly, CCA results are
better than those of ICA despite the careful choice of the non gaussian sources.
The visual results that would correspond to the unsupervised segmentation of the
image are presented in figure 2. It is easy to spot the correspondence of each AMM
induced abundance image with the ground truth ones. It can also be appreciated
that ICA and CCA results appear to be combinations of the ground truth. Some of
the abundance images of the ICA were equalized because they were almost white
and did not appear visible in the figure. The induced endmembers were plotted in
figure 1 along with the ground truth ones. Again our approach extracts spectra
from the image which are close to the ground truth, while both CCA and ICA
equivalents are rather arbitrary in shape.
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i

Figure 4: Correlation between the induced abundance images and the ground truth
synthetic abundance images (maximum correlation sorted in ascending order)

5.3 Results of the CIBIR experiment

In order to apply our AMM based approach to the shapes in the Squid System
database of fish boundaries [11] we had to preprocess them and to reduce them to
a fixed number of points. We performed a straightforward average smoothing on
the Euclidean coordinates taken as separate functions. On the smoothed contours
we selected the 200 points with the higher absolute value of the second derivative
in either axis. Then we shifted the centroid of the shape to the origin and we
normalize the coordinates to a maximum value of 1. (Not a norm normalization).
We computed the polar coordinates of the normalized shapes and take as our data
sample vectors the plot of the magnitude starting with the leftmost point in the
normalized shape. It is important to note that we did not register the shapes to
have a standard orientation, we taken them as such from the original database.
From then we obtained a set of 25 extreme shapes from the application of the
AMM method presented in section 4. For lack of space we do not reproduce them,
but instead we present in figure 5 the morphing between two of these extreme
shapes that happens when we vary a mixing parameter. From left to right, top
to bottom the shapes correspond to the ones that lie in a segment of a hiperline
connecting the shapes in the upper left and lower right positions. All the images
have a feasible appearance, which demonstrates that our characterization of the
shape space is somehow complete in the sense that the detected extreme shapes
define a region of well-defined shapes in a very high dimensional space. Note also
that the orientation of both extreme shapes is quite different.

As a second test of the power of the representation obtained, we computed the
convex coordinates of each shape in the database on the basis of selected extreme
shapes. Then we perform the search of the most similar shapes to a given one
according to the Euclidean distance between their feature vectors (the convex co-
ordinates). Figure 6 shows three of these queries into the database. The smaller
shapes to the right of the queries are the most similar ones in the database. It can
be appreciate that orientation is preserved in this process and that visual similitude
of the recalled shapes is very high. It is not possible to give quantitative measures

=
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Figure 5: Morphing from one extreme shape to another varying the degree of
mixing from 0 to 1

of the recall because the exact distribution of species, families and genders on the
database is unknown, as well as the distribution of orientations.

6 Conclusions and Further Work

The argument of this paper is twofold. First we claim that we can use as features
the convex coordinates of the data points based on the vertices of a convex region
covering the data. Second we did apply AMM as a tool to detect morphologically
independent vectors in the data sample, assuming that morphological independence
is a necessary condition for the vertices of a convex region. The application of this
ideas to the unsupervised segmentation of hyperspectral images and to the search
for similar shapes in a fish contour database shows both the adequacy of convex
coordinates as data features and the superiority of our approach to other endmem-
ber induction algorithms (CCA) and linear transforms (ICA). Future work will be
addressed to continue the experimentation on hyperspectral images, both synthetic
and real, and benchmarking against other algorithms. On the shape similarity ex-
periments we plan to apply our approach to shape databases conveniently labeled
so that classification results with a standard classifier (k-NN or naive bayes) could
be used as validation measures.
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Figure 6: Some instances of querying the collection of shapes using as features the
ones derived from testing morphological mdependence with the AMM.
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