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Abstract. The area of cognitive or intelligent robotics is moving from the 

single robot control and behavior problem to that of controlling multiple robots 

operating together and even collaborating in dynamic and unstructured 

environments. This paper introduces the topic and provides a general overview 

of the current state of the field of Multicomponent Robotic Systems taking into 

consideration the following essential problem: how to coordinate multiple 

robotic elements in order to perform useful tasks. The review shows where 

Hybrid Intelligent Systems could provide key contributions to the advancement 

of the field. 
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1 Introduction 

The classical concept of general purpose industrial robot, both in the case of 

manipulators and mobile robots, makes sense when the task to be carried out takes 

place in static or controlled completely structured settings. However, when the 

environments are highly dynamic and unstructured and when the tasks to be 

performed are seldom carried out in the same exact way, it is necessary to make use 

of robotic systems that require additional properties depending on the task. Examples 

of these environments are shipyards, plants for constructing unique or very large 

structures, civil engineering sites, etc. In these environments, work is not generally 

carried out as in traditional automated plants, but rather, a series of individuals or 

groups of specialists perform the tasks over the structure itself in an ad hoc manner. 

Consequently, it is necessary to seek new approaches based on design specifications 



such as modularity, scalability, fault tolerance, ease of reconfiguration, low 

fabrication and maintenance costs and adaptation capabilities that permit automating 

processes in this type of environments. 

 

Thus, structures that can adapt their hardware and capabilities in a simple manner 

to the task in hand are sought. At the same time these structures, as they are designed 

for operation in dynamic environments, must be endowed with capabilities that allow 

them to adapt to their environment in real time. Obviously, they must continue to 

operate even when failures occur in some of their components, that is, they must 

degrade in a non catastrophic way. All of these requirements imply the construction 

of a modular architecture, a standardization of the interfaces between modules and an 

appropriate organization of perception, processing and control for these types of 

structures that implies the reconfiguration of the system in an intelligent manner for 

the completion of the mission.  

 

All along the paper we use the notion of Multicomponent Robotic Systems 

(MCRS) which generalizes and refers to the diverse modular and multi-robot systems 

we are interested in. An atomic component of these systems will be referred to as an 

individual or module in the following. It can be a functionally complete robot unit or 

a module that needs to be combined with others in order to produce a desired 

functionality. We define the MCRS as a set of individuals with a superimposed 

architecture. This architecture consists in the definition of a spatial distribution for the 

individuals, a set of local and global control algorithms, and communication means 

and protocols for transferring information among individuals. When we talk of global 

conditions or properties, we are referring to the whole set of individuals, whereas 

local conditions and properties refer to the isolated individual. In the following we 

will review some ideas that will set the stage for the discussion on the application of 

Hybrid Intelligent Systems to this type of structures. 

 

Hybrid intelligent systems are characterized by the composition of the different 

available computational tools (Bayesian reasoning, neural networks, fuzzy systems, 



statistical classifiers, evolutionary algorithms, etc.) in a way that is adapted to the 

particular problem to be solved. They are aimed at achieving the highest degrees of 

flexibility and adaptation. Until now, most MCRS are characterized by the simplicity 

of their control systems, which are often handcrafted for the particular task that must 

be demonstrated. We believe there is an open wide application field for hybrid 

approaches to this type of systems. 

 

Throughout the paper we will consider MCRS from several key points of view, 

relating to the state of the art and trying to identify relevant Hybrid Intelligent 

Systems based avenues for research. The paper structure is as follows: in section 2 we 

will review some desired properties for MCRS. Section 3 will deal with the coupling 

among  individuals. In section 4 we will consider the morphology of systems and 

individuals. Section 5 is devoted to the implications of the environment and the task 

definition. Section 6 discusses control issues. Section 7 refers to perception. Finally, 

section 8 summarizes our conclusions on the avenues of research for Hybrid 

Intelligent Systems in MCRS. 

2 Some desired properties of MCRS 

MCRS must be endowed with specific properties that will permit performing tasks 

that no individual robot may carry out by itself or to perform them with increased 

efficiency and economy. As an extreme case in warehousing systems, a swarm of 

robotic units may allow scaling the input/output capacity of the system. In this case 

the system is physically and functionally completely uncoupled, except for the need to 

avoid collisions and deadlocks. Another example is the ability of s-bots to arrange 

themselves in a configuration that may allow them to overcome obstacles such as 

trenches that cannot be overcome by an individual. More MCRS examples 

performing several tasks with diverse success degrees may be found in the literature. 

Our question here is: what are the properties that will distinguish a new MCRS 

generation? Let us briefly go through some of the most relevant. 

 



Autonomous Reconfiguration: It is the ability of a system to modify the 

functional/spatial configuration of its individual components without external 

intervention. This property is the critical one in the present state of the technology. In 

current systems, the external (human based) interventions happen at two levels: 

reconfiguration process planning and decision on the need to perform the 

reconfiguration. Usually the determination of the goal configuration, and the 

computation of the sequence of intermediate configurations needed to reach this goal 

configuration are carried out outside the MCRS (in the sense that computations are 

not performed by any of the individual components), in some cases even the 

traction/actuator programming to perform the reconfiguration is an ad hoc program. 

The decision on the need to reconfigure implies the evaluation of the actual MCRS 

configuration relative to the assigned task and the state of the environment [91]. 

Nowadays in most systems this decision is not performed automatically, only some 

very low level tasks, such as pursuit, do not require a specification of this decision or 

the reconfiguration process [95]. Some autonomous reconfigurations in simulated 

systems has been reported using cellular automata [150], however the state of the art 

is very far from truly physical realizations. 

 

The idea that robots should be able to self-configure is introduced in [86, 103, 104, 

159, 176] over one type of modular robot, the M-TRAN [75, 85, 86]. In its current 

state of development the transitions between configurations are achieved manually 

and a few configurations for particular tasks are obtained through genetic algorithms 

and other global random search methods. To provide reconfiguration capacities 

implies two different types of problems. On one hand we have the processing problem 

of deciding how to get from the current configuration to the target one as a series of 

operations. On the other it is necessary for the hardware of the system to allow for 

reconfiguration. In the case of distributed robotic systems, to reconfigure is basically 

to change relative positions. However, in the case of modular robots, the different 

modules must couple and uncouple autonomously. Consequently, there is a need for 

specific hardware designs that allow for these actions and which involve the 

mechanical aspects of the coupling mechanism, its actuation systems and the design 



of the communication and powering contacts that allow for autonomous coupling and 

decoupling. The body of work on this topic one can find in the literature is very small 

and usually related to very simple toy systems. For instance, the idea of self-

configuration over Yim´s polybots is proposed in [174]. For planetary robots Liping 

[89] proposes a coupling method that is based on position sensors and the work 

presented in [113] proposes another one based on magnetic couplings that may lead to 

new proposals of self-configurable robots. In terms of the processing problem, an area 

of active interest is that of the application of intelligent (hybrid) systems for the 

autonomous on line reconfiguration of this type of robots. It would really be 

necessary to reformulate the problem as a distributed optimization problem with 

partial information and combine estimation methods (Bayesian or neuronal 

approaches) with robust optimization methods (evolutionary or graduated convexity 

techniques). 

 

Autonomy: It is a general property, which is desirable for any type of robotic 

system in all kinds of situations, but especially in unstructured dynamic environments. 

Autonomy implies that the system is able to adapt its configuration and perception 

and control systems to the changing environment conditions without human 

intervention. Autonomy implies life-long learning [18, 50, 54, 110]. It also implies 

self-sufficiency, meaning the ability to preserve its own life without external 

intervention (power and maintenance). It is also important to consider the autonomy 

of the individuals inside the system. In other words, it is convenient to examine how 

freedom degrees and responsibilities are passed down to the individual level when the 

whole system increases its autonomy.  

 

 

Advanced Human Robot Interaction (HRI): This kind of systems must coexist 

and interact with human operators in the same environment. They must comply with 

security standards, and, consequently, deal with communications to/from human 

operators. Regarding communication, the focus is on the task specification problem. It 

would be desirable to have systems able to correctly interpret incomplete and 



imprecise specifications, as discussed above. Moreover, when embedded in 

unstructured dynamic environments, the robotic system will be required to guess the 

information needed to adapt the task specification to the current environment state. 

The HRI may imply multimodal signal processing (image, sound, gestures, etc.) [64], 

but at present the logical/symbolic process of ensuring that the task will be correctly 

performed regardless of its poor specification is of paramount importance. Another 

interesting feature of new generation MCRS will be their ability to autonomously 

perform the decomposition of the task according to its configuration, comprising the 

possible reconfigurations as a result of this task evaluation and decomposition. When 

considering cooperating systems, the task decomposition will be additive: The 

completion of the task results from the addition of the completed results of the 

subtasks. In the case of coordination, the task decomposition is additive along the 

time axis: there is a timing requirement or some kind of completion order for the 

subtasks. On the other hand, for competition, we assume a maximization process in 

which the same task is assigned to many individuals, which will provide the best 

result through competition, or the competition produces as a side effect some 

emergent behaviour that solves the task [149].  

 

Self-perception: the system is able to determine (diagnose) its configuration from 

sensing or effector’s information. It implies determining the relative positions of its 

robot units or modules, and their current functionalities.  

 

Self-localization:  the system is able to provide its spatial position as whole. It may 

imply the construction of a map of the environment [15], or simply the position of a 

single individual (such as the hose head in systems that transport hoses and are linked 

to them) relative to its desired position. The capability of simultaneous localization 

and mapping (SLAM) provides the maximum autonomy to the system [107, 128].  
 



3 Coupling 

Because this paper aims to deal with equivalent problems across the diverse types 

of MCRS, it is required that we define a parameter that will allow us to create a 

taxonomy of the different kinds of systems. This parameter is the degree of coupling 

among individuals and it characterizes the strength of their coupling. We distinguish 

between physical, functional and informational coupling.  

 

By considering the gradation of the physical coupling, we can characterize some of  

the large groups of MCRS found in the literature. When there is no physical coupling 

we have an Uncoupled Distributed System. Examples are Robot Soccer teams [53, 72, 

80], teams of UGV or UAV [123, 124], or uncoupled swarms [129, 148, 175, 178]. 

Within this category a lot has been written about robot swarms [43, 46, 153, 154] , 

that is, relatively large groups of robots that collaborate to achieve an objective, for 

example, rescue tasks [148, 149], material handling in flexible fabrication cells [45]. 

When there is a rigid physical coupling and it produces a new unit with new physical 

and functional properties we have what are generally called Modular Systems. 

Examples of these systems are the polybot [59], M-TRAN [86], Proteo [16], Uni-

drive [76] or even, in some cases, the s-bots which can couple to perform some 

specific tasks [44, 84, 101, 102, 133, 162], being really a hybrid between a modular 

and distributed systems. Modular robots present structural degrees of freedom in 

order to adapt to particular tasks. One of the first practical implementations is a sewer 

inspection robot [32] although the idea of reconfigurable modular robots starts with 

the designs by Yim [164, 171-174] of a polypod robot that is capable of adapting its 

structure in order to produce different gaits for moving over different terrains. In [28] 

this philosophy is applied to the design of flexible fabrication cells. Finally, as a third 

category of systems, we can define that of the systems coupled through a passive non-

rigid element. We call them Linked System. The prototypical case is that of hose 

manipulated by a team of robots attached to it, or grabbing it (without letting go, that 

is, the hose becomes a part of the robot system). This connection imposes constraints 



on the robot dynamics, which interfere in their coordination. It is also a non-linear 

transmission medium for the dynamical influences among robots.  

 

It is important to note that MCRS are contemplated as a generic class of systems 

and our objective is to discuss ways of providing global autonomous actuation and 

reconfiguration strategies for them that permit the creation of heterogeneous robotic 

systems with any proportion of the three extreme types defined above and which 

delimit the domain (Modular, Linked and Uncoupled Distributed Systems). For 

instance, s-bots can act as uncoupled swarms and as modular systems [162]. As 

another interesting case, Continuum Manipulators [73] are a limit case of modular 

systems that become almost linked system. For illustration purposes, some examples 

of multicomponent systems that combine the three extreme types of system in 

different degrees are presented in figure 1.  

 

 
 
Figure 1 Instances of MCRS as mixtures of the elementary system types 

 
The functional coupling degree deals with the level of functional dependence 

between individuals required for the MCRS to be able to accomplish an assigned task 

or function. This dependence manifests itself in several ways. It may be that the 

individuals need to be placed in precise relative spatial positions (with or without 

physical coupling) (i.e.: the composition of s-bots to overcome an obstacle), that they 

need to perform relative motions (i.e.: UAV trajectories for a given mission) or that 

the individual functionalities are applied according to a plan [91]. This logical 



dependence can be rigid (when the individuals must comply with a condition in an 

exact manner) o relaxed (when a range of variability or uncertainty is allowed). The 

system will be fault tolerant when it can accomplish its task/function regardless of the 

failures of individuals to meet their conditions (schedules). In general, it is essential to 

take into account the global system task/function to consider the functional 

decomposition and its assignment to the individuals. The problem of the functional 

dependence decomposition can be posed as Dynamic Programming problem, where 

the a priori knowledge about tolerances and uncertainties in the functional coupling 

must be dealt with by probabilistic or fuzzy reasoning methods [91]. 

 

The communications coupling is defined by the communications topology and 

protocol between individuals. The topology is given by the definition of the 

communications links and their properties (bandwidth, noise, persistency, delays). In 

some publications the communications coupling is identified with the system 

architecture, because it conditions the feasibility of distributed control, and the 

communications links may imply the existence of physical couplings o some spatial 

conditions (wireless coverage). For instance, the existence of communications delays 

implies dynamical effects on the design of the control system at the local and global 

level. In general, and even more for distributed control systems, it is desired that the 

communications topology be complete, that is, that each individual is connected to 

any other individual. A special case within this category are those systems whose 

communications link is through marks on the environment (stigmergy). Some authors 

have made use of this type of approach using the pheromone metaphor [19, 34, 115-

117, 120, 136, 155], as in the case of ant colony algorithms. In this case the MCRS is 

structuring the environment to obtain some control effect.  

 

It has been recognized that one of the critical aspects of this type of systems 

(Uncoupled Distributed Systems) is the communications between the members of the 

team [147]. It is usually carried out using radio-links whose robust behavior as 

communications links among the robots performing tasks has been a problem [47]. 

This is specially so when operating in real industrial environments performing real 



tasks. Take into account that industrial environments usually involve lots of 

machinery that introduce all kinds of noise in the communications channels. In 

addition, environments such as those relating to ship construction are metallic (steel 

plates) and consequently act as electromagnetic shields, hindering communications. 

Dongtang et al. [42] study the need of optical communications and evaluate a system 

based on photo sensors and laser as an alternative. In other cases, the communications 

task must become one of the “survival” tasks of the system and, as such, the system 

must introduce it within its behavior repertoire assigning resources for its 

implementation (units that act as messengers, the construction of opportunistic ad hoc 

networks, etc.). In fact, one of the problems in self-reconfiguring systems is how to 

correctly set up and maintain communications through morphological change or 

redistribution processes. Some work has been carried out in this line such as that in 

[57] where in the framework of modular robotics, the authors propose a hybrid 

communication system that can connect on-demand to form arbitrary network 

topologies.  

 

Summarizing, MCRS may be classified along a coupling axis. This coupling may 

be physical, functional or informational based. The latter has to do with the need for 

communications in the joint operation of individuals in order to conform a successful 

MCRS. In this line, we can have from completely uncoupled systems that do not need 

to communicate to perform their tasks to very closely coupled systems that need to 

continuously and extensively communicate to be able to operate and many other 

instances in between with stigmergetic or explicit communications, with different 

channels and approaches to performing the communications process, including 

specific behaviors for communications. In terms of functional coupling, tightly 

coupled systems require very reliable and well defined operation of the individuals for 

the system as a whole to be able to operate. However, loosely coupled systems can 

tolerate errors or malfunctions in the operations of individuals and still perform the 

system task. Finally, in terms of physical coupling, we can distinguish among 

Distributed, Linked and modular systems. 



4 Morphology 

Robot shape determines its functionality, that is, the kind of tasks it can perform. In 

other words, the embodiment determines the intelligence of the robot. The tasks and 

functions that an individual may assume within the MCRS are conditioned by the 

morphology of its individuals and that of the whole. In the framework of a MCRS all 

the individuals may have the same morphology (homogeneous systems) or not 

(heterogeneous systems) [157]. The later may present the advantage of lower cost 

individuals and less redundancy in the functionality repertoire of the system. The 

former presents the advantage of independence from specific individual performance, 

because all the individuals are interchangeable and may assume all the required 

functionalities. This also implies an approach to implement better fault tolerance.  

 

The MCRS morphology as a unit comes from the consideration of the system’s 

configuration [119]. This is especially true for Modular Systems, where the physical 

coupling of modules produces a new unit with shape and properties that depend on 

the spatial configuration of the components. In uncoupled Distributed Systems, the 

individual’s spatial distribution conditions some aspects of the system, such as the 

communications network and, in some cases, the degree of accomplishment of the 

assigned task [88, 96, 119]. In Linked Systems (hoses) the spatial distribution 

includes the passive link element and its physical properties, which may strongly 

condition the whole system behaviour.  

 

The morphological design of the individual [76] determines the extent of the whole 

MCRS configuration space and its functionality. In the case of Modular Systems the 

emergent properties of a configuration usually allows performing tasks that the 

modules cannot perform. One of the current challenges is the optimal morphological 

design for the module in order to be able to produce some desired emergent properties 

[127]. Evolutionary algorithms, and other random search algorithms, have been 

applied to this endeavour in the framework of Evolutionary Robotics [105]. 

 



 The work in [164] discusses the limitations of metamorphic robots based on cubic 

modules. Different modular configurations are being proposed even nowadays, 

examples are [24, 59, 62, 76, 160]. New classes of robots are introduced in [20] where 

Campbell et al. present robots that are configured as power buses while performing 

the assigned task. In [22] Carrino and col. present modules for the construction of 

feed deposition heads in the generation of composite materials. The works reported in 

[29, 139, 168, 170] study kinematic calibration methods and ways for obtaining the 

inverse kinematics and the dynamics of modular and reconfigurable robots in order to 

solve the problems introduced by tolerances in the fabrication of the modules. On the 

other hand, [17] presents a methodology for the dynamic modeling of multirobot 

systems that facilitates the construction of simulators to be used in order to accelerate 

the development of intelligent control systems through virtual experiments. 

 

Regarding the automated design of modular robots, some work has been carried 

out in the application of evolutionary algorithms that seek the minimization of a 

criterion based on the variety of the modules employed for a given task that is 

kinematically characterized [169] or on the mass, ability and workspace [87]. In [180] 

Zhang and col. provide a representation of the robot and the environment that permits 

the application of case based reasoning techniques to the design of a modular robot. 

For the automation of the design of the configurations of modular robots, including 

self-reconfigurable robots, [79] proposes a representation of the potential connection 

topologies among the modules. Saidani [134] discusses the use of graph theory and 

cellular automata as a base for the development of design and self-reconfiguration 

algorithms.  

 

Despite all of the activity along this line, research is mostly based on pre-designing 

systems and not really on their real-time redesign or adaptation to new components. 

This type of systems will not be really autonomous until these design and analysis 

tasks are carried out in an autonomous and distributed manner over the robot modules 

themselves allowing for real time reconfiguration of the modules when necessary. 

Again, robust estimation and modeling methods that are still not in general use are 



required as well as other hybrid techniques that will constitute some type of 

distributed cognitive mechanism for the MCRS. 

5 Environment and tasks/activities 

The environment is the operation ambient of the MCRS, also called the external 

configuration space. It encompasses the physical space as well as the diverse 

operational conditions on its performance, from electromagnetic noise interference on 

wireless communication up to illumination variations or the spatial distribution of 

obstacles. In a structured environment all the elements are determined within a known 

variability range. The system design and its human operator can trust this information. 

Moreover, the structured environment often helps accomplishing the task (i.e.: mobile 

robot navigation using floor printed paths/marks). 

 

The environment for the robotic system may determine many of its design 

elements, for instance, a robot for operating in vertical surfaces [131] shows many 

specific traits non shared with other MCRS. The motivation and justification for the 

proposition of advanced robotic solutions lies in the assumption of new working 

environments, which do not offer favourable conditions for the robot operation, like 

very cluttered environments [138]. The environment may even impose conditions on 

the self-assembly process [61]. In unstructured dynamic environments, the knowledge 

about their shifting conditions is uncertain and the usefulness of any robotic solution 

is restricted in time. In the paradigmatic case of shipyards or civil construction sites, 

the environment is not suited for conventional autonomous robots and, on top of that, 

it is continuously changing as the construction proceeds toward its completion. So we 

have a non-stationary trend superimposed to the stochastic variations due to the 

normal operation in the environment. For static unstructured environments, an initial 

environment-scouting phase must be enough to build the map that would be used in 

the operation phase. The need of maps would be unavoidable in many tasks, where 

pure reactive behaviour would not be appropriate to accomplish them. For dynamic 

unstructured environments, there is an unavoidable need for regular monitoring 



looking for changes, and the systematic updating of environment information. Some 

kind of life-long learning is required to deal with this kind on environments. The 

previous problems can be basically focused like a merging problem the different maps 

created by each robot [2, 5, 15]. They can also be interpreted as a distributed AI 

problem where each agent carries out a part of the modelling task [55, 144, 158]. 

There are also approaches that include specific hybrid artificial intelligence methods 

for the environment model building [68, 181]. 

 

When we impose an objective to the robotic system we are assigning/defining it a 

task to be performed, i.e. target tracking, garbage collection, search, transport, 

coverage of an space, soccer playing, hunting, escorting [7, 12-14, 41, 44, 63, 66, 72, 

78, 81, 106, 126, 132, 137].  

 

Nevertheless, a system may show activity that does not address the satisfaction of 

an externally set objective. In other words, not all the activities of an MCRS 

necessarily serve the accomplishment of an assigned task; the system may be 

operating even when no task has been assigned to it. For instance, individuals may 

have inescapable needs (battery charge, environment map maintenance) that force 

them to maintain some activity. These needs can be understood as endogenous tasks.  

 

Besides the uncertainty about the environment state, the task specification itself 

can be imprecise or incomplete. Imprecise in the sense that the goal is not precisely 

stated, (when a navigation destination is set relative to an undefined environment 

condition). The task can be incompletely specified in the sense that some situations 

are left unspecified. This situation may be the most common in unstructured dynamic 

environments. Some robust specification interpretation and evaluation mechanisms 

will be needed to cope with imprecise and/or incomplete specifications. The problems 

raised to achieve such ability offer a rich and unexplored avenue of application of 

Hybrid Intelligent Systems. 



6 Control 

Control is the system aspect able to produce a decision sequence that reach (or try 

to) a desired goal given some information about the environment and the system 

itself. The goal statement implies the definition of a task. The definition of control 

carries with itself the ideas of intelligence and optimization. Intelligence as the ability 

to plan an execute action sequences. The control process becomes fully or partially an 

optimization process as long as the stated goal can be formulated as the global 

extreme (maximum or minimum) of an objective function [105]. Obviously, if the 

system has some assigned task, this task determines the goal pursued by the control 

system. Additionally, we can find hierarchical or sequential task/goal decompositions, 

so that the local minimization performed by each agent contributes to the global 

optimum seeking process [98]. In unstructured and dynamical environments, control 

processes must be able to detect and also recognize variations taking place in the 

environment, in order to adapt the decision and planning processes [69]. The 

objective function can be the preservation of a relative spatial configuration [119] or 

the time to accomplish the task [66]. The uncertainty in the environment knowledge 

introduces uncertainty in the evaluation of the objective function and on the effect of 

the decisions taken as a result of its optimization. New optimization (i.e. evolutionary) 

algorithms dealing with imprecise, non-stationary or noisy objective functions may be 

useful in this setting. There are few instances of heuristic propositions of control 

strategies [143, 177]. 

 

For MCRS systems control is defined at two levels: the individual (actuator 

control) and the global system (mission control). The most substantial difference is 

that, often, global system goals are fixed from the task statement, in other words, the 

task is assigned to the global system. The individual’s goals are, often, given from a 

competitive or cooperative [77, 119] decomposition of the task goal.  

 

Probably the most interesting approach from the point of view of the industrial or 

real world applications is the one based on cooperative decomposition [77]. 

Cooperation may be used in order to achieve common goals, divide the tasks, which 



is sometimes based on task allocation algorithms, and load balancing, to avoid the 

conflicts while the task is accomplished, or to make a collective decision [10, 37, 50, 

119, 123, 125, 126, 157, 158, 162]. Sometimes the basis for the cooperation is to 

obtain the maximum reward for the system as a whole. Usually theses cases are 

implemented by means of ant colony optimization (ACO) [27, 38, 182, 183] or 

reinforcement learning paradigms [9, 52, 71, 97, 156, 167]. On the other hand, the 

competitive approach is applied mainly when the roles of other environmental 

elements are taking into account as in the robot soccer [9, 53, 72, 80, 156], or when 

the system is inspired on a general multiagent system [71, 100]. 

 

It is important to notice that the global performance depends on the individual 

performance, which is especially true for cooperative task/goal decompositions. 

Individuals must be trustworthy in the sense that the global system can have 

confidence in them to accomplish their corresponding goals. Alternatively, the global 

system may be fault tolerant, achieving the global goals regardless of failure of 

individuals. Note that competitive systems will be inherently fault tolerant.  

 

Another important distinction is that between centralized [13, 40, 66] and 

decentralized (distributed) [23, 35, 102, 109, 118, 119, 135, 136, 142, 145, 153] 

control schemes. In the former, a singular individual computes the task/goal 

decomposition, assigns them to individuals and maintains information about the 

global system progressing to the global goal. In the later, the global goal fulfilment 

emerges spontaneously (synergistically) from the independent fulfilment of the 

individual tasks/goals. Evidently, the individual tasks must have been formulated in 

an appropriate way and the global problem must be decomposable (a common 

research issue in agent literature) [50, 98]. This decomposition may be reach by 

negotiation like in [121, 135], or by some swarm dynamics [178]. The communication 

structure is intimately related to the control decentralization, but not necessarily 

determines it. For instance, it is possible to find decentralized control systems where, 

there is a central communication (broadcasting in some cases) node that performs 

only the role of intermediate relaying messages between individuals. The control 

scheme must take into account the communication structure (topology, noise, 



reliability), although there exceptional systems that accomplish cooperation without 

communication [130]. Decentralized control systems are expected to be more fault-

tolerant.  

 

The control schemes must maintain at every moment updated information on the 

environment state, the system’s own state and the level of accomplishment of the task. 

There are two natural information levels in the MCRS: individual and global. In 

centralized control schemes the singular individual maintains the global information 

that supports/implements the central control. It is t that the fusion of local information 

takes place when required. In decentralized control schemes, the local information of 

each individual usually includes information generated by its own sensors and 

computational processes as well as an estimation of the local information in the 

remaining individuals, obtained from the communications received [178]. The study 

of consensus [123] heuristic algorithms and processes aims to establish the 

convergence of the local information under noise and uncertainty to a global precise 

picture of the whole system, environment and task state comparable to the one that a 

centralized controller can build with perfect information. They have been applied to 

mobile autonomous systems. Some authors emphasize the role of communication 

network as the key for distributed control system development and deployment. We 

single out [123, 124] which devote their efforts to distributed control of autonomous 

vehicles performing cooperatively and co-ordinately a task. Their central idea is the 

local estimation of a trustworthy local representation of the global system and 

environment states. The consensus building processes attempt to produce this 

representation in a robust way from the communication among individuals. Control of 

heterogeneous groups of robots may need the coexistence of heterogeneous control 

rules (set at the start) at the individual level [157] and the coordination between the 

different groups as a whole. 

 

Some Modular Systems are better suited to be controlled in a feedforward way by 

pattern generators, that can be hybridized with neuronal structures such as the ones in 

[70, 93, 99], in fact the M-TRAN self-reconfiguration is performed by a Central 

Pattern Generator  and a Genetic Algorithm [86]. Due to the inherent nature of this 



problem, it is very usual to find biological inspired approaches for controlling the 

movements of this kind of robotic mechanisms [90, 140, 146, 179]. Usually they use 

any kind of hybrid approaches in order to generate locomotion patterns to be applied 

to the mechanisms. 

 

New hybrid approaches for distributed control may be inspired by the 

hybridization of reinforcement learning with evolutionary algorithms [94], but also by  

most classical mixtures of declarative, procedural knowledge and case based 

reasoning [152]. The enrichment of the situational calculus in [53] with other 

computational intelligence tools, may enable this approach to extend to very 

unstructured dynamic environments. Distributed Control can be also obtained 

evolving fuzzy [163] or neuronal [72] controllers that exhibit some emergent 

behaviour. Many design tasks fall in the field of Evolutionary Robotics, as they can 

be formulated as minimization of a given objective function [43, 105]. 

 

The biological foundations of the idea of robot swarms are reviewed in [155], 

including a prospective of their application in [132]. In [56] Fukuda and col. discuss 

the advantages and disadvantages of multiagent robotic systems as compared to single 

robots. The individuals considered are in general very simple in their internal 

dynamics and, consequently, the introduction of sophisticated approximate reasoning 

systems would permit an extension of the range of behaviors and their robustness to 

changing situations. 

 

In [118] Peleg presents a universal architecture for the decentralized control of 

groups of robots. A review of the state of the art of decentralized control is given in 

[142]. Wessnitzer and Melhuish [166] integrate behavior based control strategies with 

swarm control systems in a task having to do with the elimination of underwater 

mines. Dorigo, within his swarmbots project [44] presents a hunting behavior as a 

collective decision making process. In general, the formulation of decentralized 

control implies the need to work with incomplete or temporally inconsistent 



information. Hybrid intelligent systems should help to improve the robustness of 

these control systems.  

 

7 Perception 

Perception is inherent to any robotic system in order to obtain feedback 

information on the effects of the decisions taken and the actions performed. 

Perception subsystems include the sensors as well as the computational processes 

(filtering, feature extraction, encoding) that produce the information as will be used 

by the control schemes [48]. Sometimes, perception is the driving task [125] for the 

MCRS behaviour. Robot perception has two aspects, the perception of its own being 

(propioception in biological systems) which we call self-perception and some authors 

call self-recognition [58], and the perception of the environment.  

 

Map building is an essential perception process in many applications [2, 5, 30, 55, 

68, 125, 158, 161, 165, 181]. For instance, in [84] Kumar and Sahin consider the 

problem of generating cognitive maps in mine detection. Pack and Mullings [109] 

introduce metrics so as to measure the success of a joint search performed by a swarm 

as well as a universal search algorithm. There are a variety of techniques that have 

been used to perform this task with distributed multi-robot systems, from occupancy 

grids [2], Genetic Algorithms [181], Morphological  Neural Networks [165] and 

Particle Filters [68]. The maximum expression of autonomy is the ability to perform 

autonomous simultaneous mapping and localization of the robot units (SLAM) [11, 

37, 39, 49, 161, 165]. This is a promising avenue of research where hybrid algorithms 

can be useful to perform more efficient explorations and feature extraction 

algorithms. There are already some hybridizations of Kalman Filter approaches with 

Fuzzy Systems for single mobile robots in environments that do not fit easily in the 

linear modelling paradigm [1, 26, 33, 67, 111, 112, 122]. 

 



A part of the life-long learning processes required for systems embedded in 

unstructured dynamic environments consists in the adaptation of the perception 

subsystem. This adaptation ranges from the need to operate robustly under changing 

sensing conditions (i.e.: changing lightning conditions for optical cameras) up to the 

need to discover new semantics (new objects or structures in the environment). 

Quantization and codification are the ways to assign meanings to the sensor data, to 

discover and identify information quanta equivalent to semantic concepts. 

Quantization partitions the data space to obtain a dimensional reduction or to remove 

uncertainty and noise. The association of discrete values to the partitions produces a 

data encoding. This data encoding allows translating the sub-symbolic data into the 

symbolic domain. Most of the adaptation processes in the perception subsystem 

consist of learning processes performing training of supervised and unsupervised 

quantizers/encoders, with some life-long learning versions for dynamic environments. 

Artificial Neural Networks architectures [3, 4, 51, 141] provide on line clustering 

techniques that perform this life-long learning process. New proposals for 

quantization techniques lie in the frontier between the already established 

computational domains of Artificial Neural Networks and Fuzzy Systems [60].  

 

In MCRS some or all the individuals may carry out perception tasks. The fusion of 

the local perceptions (views) produces global information that can take the shape of 

environment maps [125] or other kinds of sensorial maps, some times modulated by 

attention processes. This fusion process can be modelled as multi-agent system [114] 

and may involve different sensors, that is, we may need to organize the sensing of the 

robot so that the different sensors are integrated in order to obtain the desired 

information. A primitive example is the application of Bayesian decision theory for 

door detection as presented in [83]. A decentralized Bayesian decision algorithm that 

may be used for the fusion of sensorial information in sensor networks is introduced 

in [92]. Kalman Filters have been applied with some success to this problem [6, 8, 21, 

25, 36, 65, 67, 74, 108] in the context of SLAM. Hybridization of the Kalman Filter 

approaches with Bayesian, Fuzzy or Neural Network approaches may give interesting 

avenues for research. 

 



In MCRS self-perception implies the estimation of the spatial configuration of the 

components. In Modular Systems, accounting for the module connections and the 

odometry of attached actuators may be enough to build an accurate representation of 

the system configuration. For other kinds of systems, self-perception may imply 

processing sensorial information, like recognizing identifying flags or symbols 

attached to individuals [82, 95, 123]. For uncoupled Distributed Systems the 

individual component position estimation may be done in a centralized (such as the 

zenithal cameras in Robot Soccer matches) or distributed way, when each individual 

recognizes other individuals belonging to the system and locates them. For Linked 

Systems self-perception implies modelling and parameter estimation of the passive 

linking element among robotic units, on top of the estimation of the individual robotic 

unit position. This process would be realized in centralized or distributed ways, by 

means of some consensus heuristic [123].  

 

Finally, a very interesting form of control is that of sensori-motor maps, usually 

implemented through Artificial Neural Networks [93], these maps provide fast 

trainable reactive responses, and can be mixed with other control loops. An 

interesting application is that of positioning and map generation through robot swarms 

[128]. A precedent may be found in [31]. In the same vein, but at a higher cognitive 

level, Stroupe and Balch [151] try to estimate the best next move of a group of robots 

in order to obtain the map. 

 

Summarizing, perception subsystems involve computational processes that require 

adaptability and life-long learning abilities for increased system autonomy. They still 

offer challenges to develop new intelligent algorithms. Many current perception 

subsystems employ computational techniques based on variations of Kalmann Filters, 

offering a wide spectrum of hybridization combinations. 

 



8 Conclusions 

We have introduced some of the current issues of the field of Multicomponent 

Robotic Systems trying to show where the Hybrid Intelligent Systems could provide 

interesting contributions to the field. Basically we have focused the fundamental 

problem of how to coordinate multiple robotic elements in order to perform useful 

tasks. After an initial statement on the desired properties that every MCRS should 

posses, we have dissected the main topics of this scope which integrate the coupling 

among the system elements, the morphology of the whole system and also of its 

individuals, the implications of the environment and the task definition, and how and 

where the control of this kind of systems takes place. 

 

A broad spectrum of potential applications of Hybrid Intelligent Systems has become 

evident from this analysis. Algorithms are needed for the identification of the current 

state of the system, and to decide its actions,[68] in a collective distributed way, 

including the need to reconfigure the system. It is also necessary to develop efficient 

planning algorithms for the reconfiguration of a wide variety of systems, ranging from 

modular to uncoupled ones. New techniques for morphological design may allow to 

fit individual morphologies into the global functionality required to perform an 

assigned task. There is a systematic need of working with imprecise and incomplete 

information that may be temporally inconsistent that is detected when contemplating 

distributed implementations of control and sensing. Sensor fusion, whether from 

several sensors from the same robot or from different robots, requires robust and 

efficient modeling techniques.  

 
Thus, as a final comment, we must say that the quest for Multicomponent Robotic 

Systems that are  useful for applications in real unstructured and dynamic 

environments is still in its beginnings. Even  though there has been a lot of work 

carried out in the last decade in this line, there is still a lot more left  for these systems 

to achieve industrial level performance. This quest must necessarily involve an 

increase in the operational autonomy of the systems and we believe that one of the 



most promising paths to this  objective is through the application of Hybrid Intelligent 

Systems based techniques. 
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