
Gravitational Swarm for Graph
Coloring

By

Israel Carlos Rebollo Ruiz

http://www.ehu.es/ccwintco

Dissertation presented to the Department of Computer Science

and Arti�cial Intelligence in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

PhD Advisor:

Prof. Manuel Graña Romay

At

The University of the Basque Country

Donostia - San Sebastian

2012

AUTORIZACION DEL/LA DIRECTOR/A DE TESIS

PARA SU PRESENTACION

Dr/a. ___con N.I.F.________________________

como Director/a de la Tesis Doctoral:

realizada en el Departamento

por el Doctorando Don/ña. ,

autorizo la presentación de la citada Tesis Doctoral, dado que reúne las condiciones

necesarias para su defensa.

En a de de

EL/LA DIRECTOR/A DE LA TESIS

Fdo.:

CONFORMIDAD DEL DEPARTAMENTO

El Consejo del Departamento de

en reunión celebrada el día ____ de de ha acordado dar la

conformidad a la admisión a trámite de presentación de la Tesis Doctoral titulada:

dirigida por el/la Dr/a.

y presentada por Don/ña.

ante este Departamento.

En a de de

Vº Bº DIRECTOR/A DEL DEPARTAMENTO SECRETARIO/A DEL DEPARTAMENTO

Fdo.: ________________________________ Fdo.: ________________________

ACTA DE GRADO DE DOCTOR

ACTA DE DEFENSA DE TESIS DOCTORAL

DOCTORANDO DON/ÑA.
TITULO DE LA TESIS:

El Tribunal designado por la Subcomisión de Doctorado de la UPV/EHU para calificar
la Tesis Doctoral arriba indicada y reunido en el día de la fecha, una vez efectuada la
defensa por el doctorando y contestadas las objeciones y/o sugerencias que se le han
formulado, ha otorgado por___________________la calificación de:
 unanimidad ó mayoría

En a de de

 EL/LA PRESIDENTE/A, EL/LA SECRETARIO/A,

Fdo.: Fdo.:

Dr/a: ____________________ Dr/a: ______________________

VOCAL 1º, VOCAL 2º, VOCAL 3º,

Fdo.: Fdo.: Fdo.:

Dr/a: Dr/a: Dr/a:

EL/LA DOCTORANDO/A,

Fdo.:

Acknowledgments

I would like to thank my advisor, Prof. Manuel Graña, who caught me some

years ago and led me to this exciting research life. Professor Manuel Graña

believed in me when I did not believed in myself. Colleagues at the GIC have

been very supporting, specially Carmen Hernandez and Blanca Cases which

started work on the application of Reynolds' boids to the GCP.

I also would like to thank to my companies �Informatica 68 S.A.� and �In-

formatica 68 Investigación y Desarrollo S.L.� for the support and help received

from them. Especially people who in one way or another have helped me.

I would thank at last and not at least, to my parents Jesus and Africa for

always being beside me and encouraging me to never give up. My sister Afrika

and my brother Txus for being my best friends. And �nally to my wife Isabel,

the light that guides my way.

Thanks so much to everybody!

Israel Carlos Rebollo Ruiz

x

Gravitational Swarm Intelligence for Graph coloring by

Israel Carlos Rebollo Ruiz

Submitted to the Department of Computer Science and Arti�cial Intelligence on July 23, 2012, in partial

ful�llment of the requirements for the degree of Doctor of Philosophy

abstract

This Thesis deals with the development of a Swarm Intelligence algorithm to solve the

classical problem of Graph Coloring. The Gravitational Swarm for Graph Coloring

(GS-GC) algorithm maps the GCP problem into a collection of autonomous agents

that move in a space following a global gravitational attraction to the color goals and

attraction-repulsion local forces corresponding to the graph topology. The Thesis

provides formal asymptotic convergence proofs showing that the GS-GC stationary

states correspond to GCP solutions. The Thesis provides also extensive empirical

support of the GS-GC comparing it with state of the art algorithms.

xii

xiv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.2.1 Fundamental objectives 3

1.2.2 Operational objectives . 4

1.3 Contributions of the Thesis . 4

1.3.1 Publications . 5

1.4 Structure of the dissertation . 6

1.5 Selected notation . 7

2 State of the art 11

2.1 Graph Coloring Problem . 11

2.1.1 Properties . 12

2.2 Swarm Intelligence . 13

2.2.1 Flocking behaviors . 14

2.2.2 Ant Colonies . 15

2.2.3 Particle Swarms . 17

2.2.4 Gravitational swarm . 17

2.3 Graph Coloring Algorithms . 17

2.3.1 Classical algorithms . 18

2.3.2 Approximate algorithms 19

2.3.2.1 Graph Families 22

2.3.3 Swarm Intelligence for Graph Coloring 23

2.4 GCP Applications . 23

3 GCP Algorithms 25

3.1 Graph Coloring Problem methods 25

xv

xvi CONTENTS

3.2 Backtracking (BT) . 28

3.2.1 Special BT initialization 28

3.3 DSATUR . 29

3.4 Tabu Search (TS) . 31

3.5 Simulated Annealing (SA) . 32

3.6 Ant Colony Optimization (ACO) 33

3.7 Particle Swarm Optimization (PSO) 34

3.8 Gravitational Swarm for Graph Coloring (GS-GC) 36

4 Gravitational Swarm Intelligence 39

4.1 Gravitational Swarm for GCP 40

4.2 Graph coloring problem . 45

4.3 Gravitational Swarm . 45

4.4 Gravitational Swarm for GCP . 48

5 Parameter tuning 53

5.1 GS-GC model parameters . 53

5.2 Experimental results on 30-50 KRG graphs 54

5.2.1 Chromatic number . 55

5.3 Goal Radius . 56

5.4 Comfort . 59

5.5 Nom Parametric Tests . 62

5.5.1 Friedman test . 63

5.5.2 Friedman test to GS-GC 63

5.5.2.1 Goal Radius . 64

5.5.2.2 Comfort . 65

5.5.3 Post-Hoc test: Nemenyi's test 66

5.6 Concluding remarks . 70

6 Graph Coloring Results 71

6.1 Experimental design . 71

6.2 Trees and bipartite graphs . 73

6.3 Kuratowski based planar graphs 74

6.4 Mizuno's 3-colorable . 76

6.5 KRG graphs . 79

6.6 DIMACS graphs . 88

6.6.1 Test . 92

6.7 Sequential chromatic number determination 93

CONTENTS xvii

6.7.1 Random Graphs . 94

6.7.2 Leigthon graphs . 96

6.7.3 Real Graphs . 97

6.8 Conclusions . 98

7 Conclusions and further work 99

7.1 Future works . 100

A Instances and Generators 103

A.1 Introduction . 103

A.2 Trees and bipartite graphs . 104

A.2.1 Trees . 104

A.2.2 Bipartite . 104

A.3 DIMACS . 105

A.3.1 Mycielski graphs . 105

A.3.2 Queens Graphs . 106

A.3.3 Miles graphs . 107

A.3.4 Fullins graphs . 107

A.3.5 Books graphs . 108

A.3.6 Leighton Graphs . 109

A.4 Random Graphs . 109

A.5 Mizuno's Graphs . 110

A.6 Planar Graphs . 110

A.7 KRG graphs . 112

A.8 Real Graphs . 112

B Graph Coloring Suite 115

Bibliography 119

xviii CONTENTS

List of Figures

2.1 The Grötzsch Graph . 14

2.2 Flocking Birds . 15

2.3 Ants using pheromones to �nd the shortest path 16

2.4 An instance of a Graph Coloring Problem solution. 18

4.1 Simpli�ed Flowchart . 43

4.2 GS-GC agent behavior �owchart for GCP 44

5.1 Average success ratio vs Goal Radius 57

5.2 Average success ratio vs Goal Radius in 3D 58

5.3 Average Steps ratio vs Goal Radius 59

5.4 Average success ratio vs Comfort 60

5.5 Average success ratio vs Comfort in 3D 61

5.6 Average steps ratio vs Comfort 62

5.7 Nemenyi's diagram for 9 goal radius and 90% of acceptance . . . 67

5.8 Nemenyi's diagram for 9 goal radius and 95% of acceptance . . . 67

5.9 Nemenyi's diagram for 9 goal radius and 99% of acceptance . . . 67

5.10 Nemenyi's diagram for 5 goal radius and 95% of acceptance . . . 68

5.11 Nemenyi's diagram for 5 goal radius and 99% of acceptance . . . 68

5.12 Nemenyi's diagram for 6 comfort values and 95% of acceptance . 69

5.13 Nemenyi's diagram for 6 comfort values and 99% of acceptance . 69

5.14 Nemenyi's diagram for 5 comfort values and 90% of acceptance . 70

6.1 Trees and bipartite success ratio 73

6.2 Trees and bipartite average time in seconds 74

6.3 Trees and bipartite average number of steps 75

6.4 Kuratowski based graphs success ratio 75

xix

xx LIST OF FIGURES

6.5 Kuratowski based graphs average time in seconds 77

6.6 Kuratowski based graphs average number of steps 77

6.7 Mizuno's graphs success ratio . 78

6.8 Mizuno's graphs average time in seconds 79

6.9 Mizuno's graphs average number of steps 80

6.10 KRG success ratio . 81

6.11 KRG average time in seconds . 83

6.12 KRG average number of steps . 84

6.13 Big KRG success ratio . 85

6.14 Big KRG average time in seconds 86

6.15 Big KRG Average number of steps 87

A.1 Mycielski graph transition from M3 to M4 106

A.2 8 queens problem solution . 107

A.3 United States Cites Graph . 108

A.4 Books where the Books Graphs come from 109

A.5 Mizuno's MUGs for 3-colorable graphs generation [93] 111

A.6 Aleatory graphs, Kuratowski's planar graphs, Mizuno's 3-colorable

graphs and KRG new developed graph type generator. 113

B.1 Graph Coloring Suite . 116

B.2 Snapshot of a result �le . 117

List of Tables

5.1 Average accuracy results of GS-GC on the 20 KRG generated

graphs of 30 nodes, 50 edges and 6 colors for varying comfort

(rows) and radius (columns) parameter values 55

5.2 Friedman ranking for Goal Radius 64

5.3 Friedman ranking for Comfort . 64

6.1 Layout of the experimental graphs 90

6.2 Results of SGB graphs . 91

6.3 Results of CAR graphs . 92

6.4 Algorithm Rankings for Friedman Test 93

6.5 Graphs of 100 nodes and 1000 edges. Between parentheses the

minimum solution found. 94

6.6 Graphs of 100 nodes and 2000 edges. Between parentheses the

minimum solution found. 95

6.7 Graphs of 100 nodes and 3000 edges. Between parentheses the

minimum solution found. 95

6.8 Graphs of 100 nodes and 4000 edges. Between parentheses the

minimum solution found. 95

6.9 Leighton Graphs results . 97

6.10 Exam timetabling of Lewis [82] plus GS-GC 97

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

This introductory chapter provides the motivation for this Thesis in Section

1.1. Section 1.2 enumerates the objectives of the work. Section 1.3 highlights

the contributions achieved by this Thesis, including the relevant publications in

Section 1.3.1. Section 1.4 comments the structure of this dissertation. Finally,

Section 1.5 summarizes notation used in the dissertation.

1.1 Motivation

The works of the candidate towards this thesis have followed some meanderings

until reaching an stationary focus in the topics covered in this memory. Works

have covered some combinatorial optimization problems, as well as RFID appli-

cations in industry. The actual topic of the thesis comes from the initial works

by members of the research group towards the application of Reynolds' boids

to a combinatorial optimization problem. Soon it was realized that no general

abstract application was possible, so that a speci�c problem was to be attacked.

The Graph Coloring Problem (GCP) was selected by its long history, current

approaches and potential applications. One basic approach was to map problem

solutions to boids, so that the boid dynamics would provide some solution, much

like the Particle Swarm Optimization approach. However, a di�erent view, that

of mapping graph nodes to boids and study the aggregation and separation dy-

namics of boids in order to obtain some information on the problem solution,

proved to be fruitful. The basic problem of de�ning the color compatibility

problem was modeled as some kind of attraction and repulsion between boids.

1

2 CHAPTER 1. INTRODUCTION

Initial works in the group were addressed to show that the approach e�ectively

provided some kind of solution to the GCP. The main questions then were:

� It is possible to map the GCP to the state of some kind of boid swarm

system?

� It is possible to de�ne some dynamics that lead the boids to reach global

con�gurations corresponding to feasible solutions of the GCP?

� It is possible to obtain some optimal solution, thus determining the chro-

matic number?

The published results showed that including some attraction/repulsion terms

in the boids equations depending on the adjacency of the corresponding nodes

in the underlying graph it was possible to approach coloring solutions. Im-

provements were introduced by the de�nition of speci�c positions in space cor-

responding to color goals. The works of this thesis started in the participation

in computational and formal studies directed to assess the role of the boid per-

ceptual �eld in system's convergence. Some percolation results were used as

background trying to stablish some bounds. However the results were incon-

clusive and counterintuitive. Large perceptual �elds lead to poor convergence,

and the theoretical results had poor correspondence with the empirical results

obtained from extensive simulations.

At this point the thesis has a paradigm shift introducing the gravitational

metaphor, which allows for local interactions corresponding to graph adjacency

and global attraction corresponding to color goal seeking. Pursuing this has

proven fruitful in theoretical and (computational) empirical results. We have

been able to prove some important results, namely that the system will always

converge to a solution if it is feasible (the hypothesis on the number of colors is

not lower than the graph's chromatic number). An open question is to ensure

that the system always converges to a stationary state, i.e. that there are no

limit cycles or chaotic (bounded random) behaviors.

Why swarm approaches?: Swarm approaches may lead to problem solving

methods that are knowledge distributed in the sense that the knowledge of the

actual state of the solution is distributed over the collection of individuals. No

single individual possess the knowledge of a complete solution. Observation of

the system as a whole gives the sought answer. It is expected that such kind of

approaches would give bene�ts in terms of

1.2. OBJECTIVES 3

� computational economy: the computational cost is distributed among the

agents, no single agent bears the cost of computing the complete solution

of the problem

� robustness against failure and noise: the global system will perform even

if some agents fail or have uncertain/noisy information

� adaptation to non-stationary environments: solutions emerge as a result

of a collective unsupervised interaction, therefore, the system may adapt

to changing circumstances in an unsupervised way, no need for a master

to activate the adaptation mechanism.

Why the GCP?: The GCP is a classical combinatorial problem, extensively

studied, easy to understand an to implement competitive approaches for valida-

tion/evaluation purposes. Therefore is a magni�cent test ground for innovative

computational approaches. Mapping other problems into the GCP may provide

practical solutions to other (real-life) problems.

1.2 Objectives

The main objective of the Thesis is the development of innovative nature in-

spired algorithms for the approximate solution of combinatorial problems, specif-

ically the Graph Coloring Problem (GCP).

1.2.1 Fundamental objectives

Fundamental objectives are the main driving research questions that our re-

search tries to answer.

� It is possible to map a combinatorial problem into a swarm, so that its

dynamics provide a solution to the posed problem? Speci�cally, can the

GCP be mapped into such a system?

� The swarm can evolve to a feasible solution even if all the swarm members

are ignorant of the problem that is being solved? In other words, can be

the problem solution be posed as an emergent collective behavior?

� It is possible to give a formal proof of the convergence of the system to

such kinds of solutions?

4 CHAPTER 1. INTRODUCTION

� The proposed method is competitive regarding the current state-of-the-

art?

� How sensitive is the proposed method to the setting of its computational

parameters?

1.2.2 Operational objectives

In order to attain the stated fundamental objectives, we need to develop some

instruments:

� Creation of a collection of benchmark graphs for the replicability of the

computational experiments. Such collection must show some speci�c fea-

tures that are important for the evaluation of the algorithms

� Implementation of the competing algorithms. Most algorithms reported

in the literature have no public implementations provided by the authors.

� De�ning methodological steps for sound comparison of algorithms.

� Managing, analysing and plotting the big quantities of results obtained

from the computational experimentes. Performing the maintenance of the

experiment execution which can span several days.

� Performing the review of the state of the art, searching for competing

algorithms and reference results.

1.3 Contributions of the Thesis

It is a well known fact of scienti�c research and other creative activities that

the actual accomplished results of the work are an approximation to the fuzzy

expectations set at the very beginning. Therefore, in this section we summarize

what we identify as the main actual contributions of this Thesis:

1. The proposal of an innovative approach to the Graph Coloring Problem

following the a Swarm Intelligence approach. Speci�cally, the proposed

approach combines the mechanics of gravitation and other physical forces

with the �ocking behavior of birds. We call this approach Gravitational

Swarm for Graph Coloring (GS-GC).

1.3. CONTRIBUTIONS OF THE THESIS 5

2. We have been able to prove that stationary states of the GS-GC corre-

spond to solutions of the GCP. This proof does not deal with the dynamics

of convergence to such stationary states. Dynamical convergence to sta-

tionary states is still an open research question for GS-GC.

3. We have performed an extensive computational evaluation of GS-GC, both

regarding numerical sensitivities to parameter settings and comparison

with state of the art algorithms for GCP.

From an operational point of view, the Thesis provides instrumental contribu-

tions allowing to perform the validation of GS-GC, and to have independent

con�rmation of our claims by independent researchers:

1. We have de�ned a new Graph class called KRG, and a constructive pro-

cedure to generate KRG graphs with a known chromatic number. This

procedure allows us to generate arbitrarily di�cult problem instances.

2. A Graph coloring suite thar includes seven algorithm implementation, in-

cluding our Gravitational Swarm Intelligence algorithm and also a toolbox

for generating graphs:

(a) Aleatory Graphs

(b) Hard 3-coloreable Graphs

(c) Planar graphs

(d) KRG non planar graphs

3. Public implementations of both the graph suite generator and competing

GCP solving algorithms.

1.3.1 Publications

Journal publications:

� Israel Rebollo, Manuel Graña, Carmen Hernández, "Aplicación de algorit-

mos estocasticos de optimización al problema de la disposición de objetos

no-convexos" in Investigación Operacional editada por la Dirección de In-

formación Cientí�co Técnica de la universidad de La Habana, volumen 22,

número 2 de 2001. pags 184-192.

6 CHAPTER 1. INTRODUCTION

� Israel Rebollo, Manuel Graña, Blanca Cases, �On the e�ect of spatial per-

colation on the convergence of Graph Coloring Boid Swarm" in Interna-

tional Journal on Arti�cial Intelligence Tools, DOI No: 10.1142/S0218213012500157

Accepted 2012-01-23.

� Blanca Cases, Israel Rebollo, Manuel Graña, "A Spatial-social-logical

model explaining human behavior in emergency situations" in Logic Jour-

nal of the IGPL (2011) (published on line) DOI No: 10.1093/jigpal/jzr006.

� Manuel Graña, Israel Rebollo, "Gravitational Swarm �nds Graph Color-

ings", 2012, submitted.

Conference publications:

� Israel Rebollo, Manuel Graña, "An empirical comparison of some approx-

imate methods for Graph Coloring", in 7th International Conference Hy-

brid Arti�cial Intelligent Systems, Part 2, pp. 600-609. ISBN 978-3-642-

28930-9

� Israel Rebollo, Manuel Graña. "Gravitational Swarm Approach for Graph

Coloring" in Studies in Computational Intelligence, 2011, Volume 387,

159-168, DOI: 10.1007/978-3-642-24094-2 D.A. Pelta, N. Krasnogor, D.

Dumitrescu, Camelia Chira and R. Lung (eds) Publisher: Springer-Verlag

Berlin / Heidelberg ISBN 978-3-642-24093-5

� Israel Rebollo, Manuel Graña,"Further results of Gravitational Swarm

Intelligence for Graph Coloring" in Nature and Biologically Inspired Com-

puting (NaBIC), 2011 Third World Congress on, pp. 183 - 188. DOI No:

10.1109/NaBIC.2011.6089456 ISBN 978-1-4577-1122-0.

� Israel Rebollo, Manuel Graña, �Dynamic Tabu Search for Non Stationary

Social Network identi�cation based on Graph Coloring� in 7th Interna-

tional Conference on Soft Computing Models in Industrial and Environ-

mental Applications, (submitted)

1.4 Structure of the dissertation

The PhD dissertation report has the following structure.

Chapter 2 contains a detailed description of the state of the art for the Graph

Coloring Problem and the Reynolds' boids approach to Swarm Intelligence.

1.5. SELECTED NOTATION 7

Chapter 3 show the algorithms for GCP implemented in the suite except ours

that will be more exahustive explained in the next section. This implementation

are not exactly the same that appear in the literature so we need to explain the

special features.

Chapter 4 provides a deep description of our Gravitational Swarm Intelli-

gence algorithm, with the �owchart that describes the model. In this secction

we show formaly the convergence of our algorithm to a stable state.

Chapter 5 discusses the parameter that need the model. If there are necce-

sary or not, and we use non parametrical test to estract the best parameter for

testing our new method.

Chapter 6 discusses the computational experiment results obtained over all

the graph families shown in chapter 5. We plot the accuracy of our method

against the other implemented methods and the result that appear in the bib-

liography. We also plot the computational time in steps and seconds.

Chapter 7 gives the conclusions of the Thesis and some ideas for future

research.

Appendix A A describes the graph instances used for test. We also describe

the graph generator program embeded in the suite of coloring. The new graph

class KRG that has been developed in this thesis is explained.

1.5 Selected notation

V Set of nodes of a graph

E ⊆ V × V Set of edges of a graph

G = {V,E} Graph with V nodes and E edges

B A group of agents B = {b1, ..., bn}

−→vi The speed vector of the agent i

pi(t) = (xi, yi) The position in Cartesian coordinates x, y of the agent i in the

instant t

8 CHAPTER 1. INTRODUCTION

k A color

C A group of colors C = {1, ..., k}

CG The colors of each goal CG = {g1, . . . , gK}

nearenough The goal radius, inside which the agents get the goal color

N (gk) The neighborhood in the goal k, the number of agents inside the

goal in�uence

repulsion The opposition force exerted by a pair of agents with a link and the

same color

R (bi, gk) Repulsive forced exerted between the agent bi and agents that repel

in the neighborhood of the goal gk

{−→ai,k}Are the attraction forces of the color goals exerted on the agents

d The Euclidean distance between the position of an agent and the

nearest color goal

Comfort is the numer if cicles were an agents has a color without having

repulsion forces in it's neighborhood

λ Represent the probability of an agent to be expelled from a goal

maxconfort Is the maximum confort that an agent can reach

M The chromatic number of a graph

S The search space

µiIs the charge of the agents, represent repulsion for linked nodes

δAij Is the attraction forze between the objetcs i and j

δRij Is the repulsion forze between the objects i and j

θA A threshold where the attraction forze has e�ect

θR A threshold where the repulsion forze has e�ect

1.5. SELECTED NOTATION 9

10 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

This chapter provides some background information on the Graph Coloring

Problem (GCP) and the Swarm Intelligence (SI) approach. We give formal def-

initions of the GCP and an intuitive description of the main SI approaches that

have been used for GCP. The chapter contains a review of current approaches

to solve the GCP.

The content of the chapter is as follows: Section 2.1 introduces the GCP.

Section 2.2 introduces the Swarm Intelligence direct precedent to the algorithm

proposed in this thesis. Section 2.3 provides an state of the art of current

approaches to solve GCP. Section 2.4 comments on some applications of GCP

to real life problems found in the literature.

2.1 Graph Coloring Problem

An undirected graph is a collection of nodes linked by edges G = (V,E), such

that V = {v1, . . . , vN} and E ⊆ V × V , and (v, w) ∈ E ⇒ (w, v) ∈ E. The

neighborhood of a node in the graph is the set of adjacent nodes linked to it:

N (v) = {w ∈ V |(v, w) ∈ E }.
The Graph Coloring Problem (GCP), aka Graph Labeling, aka Node Color-

ing in graph theory, is an assignment of colors to nodes of a graph subject to

the constraint that two adjacent nodes don't share the same color. The coloring

of a graph with a �xed set of colors can have multiple solutions. The chromatic

number χ(G) is the minimum number of colors that can be used to color the

graph. Even minimal colorations may not be unique, in fact any permutation

11

12 CHAPTER 2. STATE OF THE ART

of the color assignments is equally satisfactory.

Similarly, an edge coloring assigns a color to each edge so that no two adja-

cent edges1 share the same color, and a face coloring of a planar graph assigns

a color to each face or region so that no two faces that share a boundary have

the same color. But all these problems can be summarized in the node coloring.

De�nition 1. Graph coloring. Let C = {c1, . . . , cM} denote a set of colors.

Given a graph G = (V,E), a graph coloring is a mapping of graph nodes to

colors C : V → C such that no two neighboring nodes have the same color, i.e.

w ∈ N (v)⇒ C (v) 6= C (w).

De�nition 2. Minimal graph coloring. A set of colors C∗ is minimal relative

to graph G = (V,E) if (1) there is a graph coloring C∗ : V → C∗ , and (2) for

any smaller set of colors there is no graph coloring using it: |C| < |C∗| ⇒ ¬∃C :

V → C. Alternative de�nition: any graph coloring on this graph has a greater

or equal set of colors C : V → C ⇒ |C| ≥ |C∗|.

De�nition 3. Chromatic number : The chromatic number χ(G) is the number

of colors of the minimal graph coloring C∗.

De�nition 4. Chromatic polynomial, denoted P (G, k), is the number of possi-

ble coloring solutions of graph G using a given number k of colors.

De�nition 5. Edge Coloring is a proper coloring of the edges, meaning an

assignment of colors to edges so that no two edges incident to a node are of the

same color. Changing edges by nodes and nodes by edges the problem can be

transformed into the node coloring.

De�nition 6. Total Coloring is the coloring edges and nodes at the same time,

keeping the constraints of the GCP. Two adjacent nodes can't have the same

color but neither can an edge and an end-node of the edge.

2.1.1 Properties

We present some properties related to the GCP.

De�nition 7. A complete graph is a graph that has edges between all it's

nodes.

1Two edges are adjacent if they share one end node.

2.2. SWARM INTELLIGENCE 13

Remark 8. The bounds on the chromatic number are 1 ≤ χ(G) ≤ n. All nodes
can be colored with a single color, i.e. χ(G) = 1 only if the graph has no edges.

If the graph is complete then we need a di�erent color for each edge χ(G) = n.

De�nition 9. A Clique is a sub-graph of a graph that is complete.

Remark 10. The chromatic number of a graph is at least equal to the size of

the graph's biggest clique.

Remark 11. Graphs with large cliques will have high chromatic number, but

the opposite is not true.

Theorem 12. Mycielski: There are triangle-free graphs with arbitrarily high

chromatic number.

The Mycielski graphs are constructed following a precise procedure giving a

constructive proof of this theorem. The Grötzsch graph shown in �gure 2.1 is

the Mycielski M4 graph. We have used this kind of graphs for testing the GCP

solving algorithms because the chromatic number is known and it can be made

as large as needed.

Theorem 13. Kuratowski. A �nite graph is planar if and only if it does not

contain a sub-graph that is a subdivision of k5 or k3,3.

Where k5 is the complete graph on �ve nodes, and k3,3 is the complete

bipartite graph of six nodes, three of which connect to each of the other three.

Theorem 14. Four color theorem: any planar graph is 4-coloreable.

2.2 Swarm Intelligence

Swarm Intelligence (SI) is the emergence of meaningful con�gurations from the

collective behavior of decentralized and self organized systems, whose dynamics

are inspired in the nature. Therefore, SI proposes a distributed computational

model to solve combinatorial problems by multi-agent systems. A de�nition

extracted from [42] reads �SI is a model where the emergent collective behavior

is the outcome of a process of self-organization, in which agents are engaged

through their repeated actions and interaction with their evolving environment�.

14 CHAPTER 2. STATE OF THE ART

Figure 2.1: The Grötzsch Graph

2.2.1 Flocking behaviors

The inspiration in �ocking birds to design computational systems appears in

[119], where we �rst �nd the application of simple behavior rules followed au-

tonomously by individuals of a group of virtual animals, in this case birds, to

simulate the complex behavior of �ocks, such as following the leader. Since then,

simulation of �ocking behavior has been used to control the navigation of self

organized mobile multi-robot systems [2, 133]. El-abd [38] created a Particle

Swarm Optimization (that we explain latter) based in �ocking behavior.

Reynolds studied the behavior of the birds and de�ne three rules, that can

be translate into mathematical formulas, and then applied to mathematical

problems. The formalization of the problem starts with a group of bird B =

{b1, ..., bn} placed in the position pi. Let de�ne ∂i as the group of birds in the

neighborhood of radius z of the bird bi . Each bird moves through the space

with a speed vi. The Reynolds rules for the behavior of �ocking birds are:

1. Separation: avoid crowding neighbors (short range repulsion). Steer to

2.2. SWARM INTELLIGENCE 15

Figure 2.2: Flocking Birds

avoid crowding local �ock-mates inside a private zone of radius z.

vsi = −
∑

bj∈∂i:d(bj ,bi)<z

(pj − pi) (2.1)

2. Alignment: steer in the direction of the average heading of local �ock-

mates.

vai =
1

| ∂i |
∑
bj∈∂i

vj − vi (2.2)

3. Cohesion: steer to move toward the average position of local �ock-mates

(long range attraction).

vci = ci − pi where ci =
1

| ∂i |
∑
bj∈∂i

pj (2.3)

With these three rules we can compute the movement speed of each bird it the

time t+ 1 like

v(t+ 1) = fmaxN(α0v(t) + αsvs(t) + αava(t) + αcvc(t) + αnvn). (2.4)

Where the αx are modi�cation parameters. The vn is noise and fmaxN is a

normalization value.

2.2.2 Ant Colonies

Besides birds, other living creatures have been considered for computational in-

spiration. Works like [21, 33] have found inspiration in the ant colonies. Brie�y,

16 CHAPTER 2. STATE OF THE ART

Figure 2.3: Ants using pheromones to �nd the shortest path

ants move from the ant colony towards food sources leaving a trail of pheromones

behind them. Using this pheromone trail, ants manage to �nd the optimal path

between the ant colony and the food source. A more detailed explanation of the

trails of the ants is shown in [66]. The �rst problem where the ant colony opti-

mization (ACO) has been shown to provide feasible solutions was the classical

Travel Salesman Problem (TSP) [33]. There are a lot of versions of ACO soving

this problem, and ensuing applications, i.e. tracing the route of a vehicle [122].

Balaprakash [4] presents an ACO probabilistic TSP.

ACO can solve more problems, not only the TSP. Franks [43] show ants de-

ciding how to get to moving targets. The ligand of proteins using the PLANTS

(Protein Ligand ANT System) algorithm of Korb [73]. The formation of paths

on multi-robot systems is approached with ACO in [100]. Ant clustering with

locally weighted where the ants has some memory is discussed [106]. A rein-

forcement learning algorithm based algorithm can be found in [9]. More about

trail formation and TSP in Shah [123]. The list is endless, and continuously

growing as this nature inspired approach remains in fashion nowadays.

2.3. GRAPH COLORING ALGORITHMS 17

2.2.3 Particle Swarms

The other big area of research in the SI �eld is the Particle Swarm Optimization

(PSO), with increasing applications and results. Here the agents are particles

moving in the solution space searching for the optimal solution to the problem.

But agents have a particular feature: memory. This is the main di�erence

with other forms of SI. The PSO particles know the global objective function

of the system, keeping in their memory the best global solution found by the

Swarm and also their own best local solution found so far. Particles move in the

surroundings of their global and local best position found. This way the systems

moves towards the global optimum, but this heuristic doesn't guarantee �nding

the best solution. Moreover, this algorithm can solve ill-posed problems, noisy

and changing along time, even those modeled discontinuous functions because

PSO does not use the objective function's gradient.

Convergence of the standard PSO algorithm is proven in [65], additional

convergence is discussed in [39]. The essential PSO is introduced in [109], but

there are a lot of variants with speci�c convergence properties, such as [118],

or the ensemble PSO [35]. Applications are not restricted to combinatorial

problems, for instance [83] applies PSO in steganographic JPEG images .

2.2.4 Gravitational swarm

The Swarm computing natural inspiration is not necessarily coming from living

beings. Rashedi [113] present a work where the nature inspiration comes from

the gravitational Law of Newton. In this work, the algorithm is built using the

gravitational law in a very strict way, using masses, velocities and distances. We

have also been inspired in the gravitational theory in our main contribution, but

without going into the detail of the physical laws of the real world. We have

assumed that the masses are not relevant. That only the goals has an attraction

force. And the speed of the agent is inversely proportional to the distance to

the goals. Near the goals the attraction disappear, breaking Newton's laws.

2.3 Graph Coloring Algorithms

We give a brief survey of di�erent GCP solving algorithms, from classical algo-

rithm up to recent Swarm Intelligence approaches. There are a lot of reference

books like [7] where we can �nd information about this problem, and more about

18 CHAPTER 2. STATE OF THE ART

Figure 2.4: An instance of a Graph Coloring Problem solution.

graph theory. In �gure 2.4 we can see an example of a colored graph.

We are going to introduce the most famous algorithms starting from classical

algorithm, recalling some relevant theorems from graph coloring theory. We also

present some graph families with special features, that help to understand the

di�erent approaches for this problem. Then we show algorithms based in SI

approach, although we are going to explain the GS-GC in more detail in a

separate chapter.

2.3.1 Classical algorithms

The GCP is a classical problem in mathematics. A well known instance of

the problem appears when trying to distinguish states or regions in England

by colors in political maps, thus the Francis Guthrie four color conjecture in

the 17th century. At the time, all the graphs considered were planar graphs

representing pieces of land, and there wasn't a restriction of the number of

colors to use, even though four was enough. But in the 20th century, more

complex instances of GCP were considered. We are going to lay aside the

history and go to the mathematical problem. In the year 1949 the Russian

scienti�c Alexander Zykov stated a theorem which sets the stage for a lot of

GCP solving algorithms. Speci�cally, the contraction algorithm is based on

Zykov's theorem of contraction [145], aims to reduce the complexity of a graph

2.3. GRAPH COLORING ALGORITHMS 19

reducing the computational time need to solve it.

Theorem 15. Zykov: x(G) = mı́n {x(G/x, y), x(G+ xy)} for non adjacent

nodes x and y.

We can see how this algorithm works in a recent Odaira's paper [101]. In

an earlier work, Corneil [24] developed an algorithm which searches through the

Zykov tree in a depth-�rst manner. Dutton [37] searches non-adjacent nodes

with a maximal number of common neighbors to contract until a complete graph

is achieved. In Leighton's Recursive-Largest-First (RLF) algorithm [78] the

contraction a�ects the largest path between nodes. Palubeckis present a more

actual version of this algorithm in [102]. A modi�ed LF-algorithm (Largest

First) presented by Hansen in[56] is an optimization of RLF where the recursive

technique is changed to a sequential way.

The most famous algorithm was developed by Brelaz [11] in 1979. This al-

gorithm was called DSATUR because it is based in the degree of saturation of

a graph. It is an approximate algorithm, that does not perform an exhaustive

search. We will explain it in detail in chapter 3. Although, this algorithm some-

times fails �nding the optimum [128], it is still a reference algorithm. Turner

[134] said that almost all k-colorable graphs are easy to color with his heuristic,

and also proposed a new implementation of Brelaz algorithm to enhance it's

draw falls. Wood in 1997 [138] and more recently Mendez-Diaz [95] presented

another optimized version of the DSATUR improving that of Turned.

2.3.2 Approximate algorithms

Sometimes the computational e�ort to �nd the exact minimal coloring of a

graph is too huge. So that there are some algorithms that don't report the

exact solution to the problem, as it has been said in Zykov's theorem based

algorithms. These algorithms basically give a upper bound on the chromatic

number providing a quick solution to the problem. Then, other techniques must

be applied to �nd the exact solution of the problem. The theorems of Vizing

[135] and Shanon [124] are used to achieve this.

Theorem 16. Vizings: In a graph or multigraph G, let denote Γ(v) the valency

of node V , and let denote Γ(G) the largest valency in G. Let the multiplicity

µ(v, w) of nodes V and W be the number of parallel edges that link them. Let

µ(G) be the largest multiplicity in G. A graph is a multigraph for which µ(G) =

1. An edge coloring of a (multi)graph G is a mapping from the set of its edges

20 CHAPTER 2. STATE OF THE ART

E to a set of items K called colors, in such a way that at any node V, the Γ(v)

edges there all have a di�erent color. An edge-κ-coloring is an edge-coloring

where | K |= κ. The chromatic index χ(G) is the smallest number κ for which

an edge-κ-coloring of exists.

Theorem 17. Shanon: For any multigraph G, χ(G)≤
⌊
3
2Γ(G)

⌋
.

The COSINE algorithm by Hertz [59] and the Clique Covers (CC) algo-

rithm of Klotz [71] are two examples of this kind of approaches. The authors

of COSINE have published an updated work in[60]. The COSINE algorithm

�rst tries to �nd an upped bound of the chromatic number in a quick manner,

and second uses a more sophisticated coloring procedure based on Tabu search

techniques. This algorithm gets a good relation between accuracy and time.

The CC uses the Vizing and Shanon theorems to �nd an upper bound of the

chromatic number and eventually �nd it.

The Backtracking Sequential Coloring was discovered by Brown [13], whose

work was improved by Brelaz to make his DSATUR, Wilf [137] showed that if

the number of color approaches in�nity the order of Backtracking is O(1), and

Park [104] presented a new version and an application to network security.

The simulated annealing has been applied to GCP recently by Titiloye [131]

using the Monte-Carlo path-integral. Simulated annealing method has been also

used by Johnson [67] showing empirical result to the GCP. Nolte [99] focus the

use of Simulated Annealing to 3-colouring problem. Bonomo [8] make a map-

ping of the Bounded coloring problem to the classical Travel Salesman Problem

TSP and solve it using the simulated annealing.. Other probabilistic methods

have been used such as hill-climbing used by Rhyd [120] for order independent

minimum grouping problems, and applied to GCP.

Tabu search algorithm has been widely used for GCP solving. The Tabucol

algorithm presented by Galinier and Hertz [48] proposed in 1987 that today

is still present in a lot of evolutionary and hybrid algorithm by it's perfor-

mance in local search. Blochliger [6] used a partial solutions method based in

a Tabu Scheme for local search. The hybridization mention before can be seen

in Mabrouk [87] presenting a parallel Genetic-Tabu algorithm for the GCP. Qu

[112] present a hyper-heuristic based in heuristic for coloring graphs, where the

Tabu Search is also presented.

It is possible to built optimized heuristics for graphs with special features.

Nakayama [63] proposed an heuristic for interval graphs, permutation graphs

and trapezoid graphs, the interval graph is also presented in Yu [143] who de-

2.3. GRAPH COLORING ALGORITHMS 21

velops a parallel algorithm. Gaun [54] works over weighted graphs a partic-

ular problem that needs di�erent approaches to solve it like the �rst-�t algo-

rithm. Vredeveld [136] also works over weighted graphs focused in local search.

Bouchard [10] is interested in a mix of interval graphs as we have seen in Yu and

Nakayama and weighted graphs studied by Gaun and Vredeveld, but solved this

more complex problem. (p, k)-coloring problem is studied by Demange [31] that

generalizes the GCP by replacing stable set by cliques and stable sets. Complex-

ity of two coloring problems in cubic planar bipartite mixed graphs presented

by Ries [121]. The P'4 graphs where a P4 is an induced path with four nodes

and P'4 is any P4-free graph is studied by Campos [16]. Daniel [32] works on

chordal graphs where a graph is chordal if each of its cycles of four or more

nodes has a chord, which is an edge joining two nodes that are not adjacent in

the cycle. Comfessore worked previously in more explicit chordal graphs [23].

The Paley graph P q which is the graph with nodes the elements of the �nite

�eld Fq and an edge between x and y if and only if x-y is a non-zero square in

Fq is solved by Maistrelli in [88]. Yadav reduced the problem to acyclic node

coloring of graphs of maximum degree 5[141]. Galinier and Hertz [47] present

a more general algorithm for GCP using a memory based algorithm di�erent

from theirs famous Tabucol algorithm. Costa [26], that we will see later, here

study graphs with cardinality constraints on the neighborhoods, other variant

in the GCP problem.

The evolutionary strategy have been used in a large number of works. Marino

[90] made a mapping into a graphs and then solve the GCP to show a theoretical

framework to break the symmetry of the search space in a partitioning problem

using a Genetic Algorithm. Shen [125] present a Genetic Algorithm for GCP. Bi-

man develops a genetic algorithm with a new operator called Multipoint Guided

Mutation [5]. Porumbel [111] presents a search space analysis for improving lo-

cal search is GCP and solve it with a Genetic algorithm that appears in [110].

A parallel technique in genetic algorithm is also common like Sivanandam [126]

who present a hybrid parallel genetic algorithm approach, Kokosiski [72] present

a parallel genetic approach for the sum coloring problem which asks to �nd a

node coloring of a given graph G, using natural numbers, such that the total

sum of the colors is minimized and Yu [142] who applies the Parallel genetic

approach in VLSI Channel Routing. Finally there are hybridization of Genetic

Algorithm with other methods like arti�cial neural networks ANN presented by

Maitra[129, 89].

There are di�erent strategies like Abasian's[1] that uses a non-systematic

22 CHAPTER 2. STATE OF THE ART

method based on a cultural algorithm to solve the GCP. Dukanovic[36] indicates

a way to �nd the lower bound of a chromatic number. Mehrotra [91] propose

a column generation method for implicit optimization of the linear program at

each node of the branch-and-bound tree to solve the GCP. The fuzzy approach

can't be missed in the survey and Gomez[52] present a algorithm for fuzzy

graphs.

2.3.2.1 Graph Families

Not all the graphs present the same complexity to be colored. Some times we

can bene�t from special graph features that help in the process of �nding the

chromatic number, as we have saw in the previous section. There was a challenge

in 1993, the second DIMACS challenge [68, 69], where a lot of graphs were o�ered

to test them. The researches were focused in these particular graphs because it

becomes very easy to compare with the rest of the scienti�c community. More

detailed explanations are given in Appendix A.

A big problem is to know a priori the chromatic number of a graph. Some

theorems can give precious information in this regard, and also can be used to

build graphs in a way that �ll the requirements of the theorems and be more

easy to solve. For instance, that fact that planar graphs are 4 colorable [74, 75],

eases the work on coloration of planar graphs [85][29]. In Appendix A we recall

the Kuratowki's theorem.

A famous family of graphs is Mycielski graphs [96], already mentioned before.

The Mycielski graphs M i are triangle-free, with chromatic number i , Ni =

3 ∗ 2i−2 − 1 nodes and 3 ∗ Ni−1 + Ni edges. The M4 is also called Grötzsch

graph. These graphs are been solved in [92, 17]. But even though are a good

starting point in the GCP, they are very easy graphs. Caramia [18] shows that

sometimes is not feasible to solve the GCP with any heuristic. More works

based in Mycielski graphs can be found in Lam and Larsen[76, 77].

Other classic graph family is the queens' graphs, based in the chessboard

and chess rules. A more exhaustive explanation is given in appendix A. We �nd

a solution of these graphs in [22].

Mizuno [93, 94] have generated 3 colorable graphs that are hard to solve. Us-

ing Mizuno's method we can build graphs which are very hard to color, although

their chromatic number is only 3 .

Other graph type can be found in Chang [20] and Petrosyan [108, 107] de-

scribing outer-planar graphs and trees. A tree is an undirected graph in which

2.4. GCP APPLICATIONS 23

any two nodes are connected by exactly one simple path. More graphs with

the geometrical special feature in Kang and Klotz [70, 71]. Less tested graph

families found in the literature are also important, such as the one reported in

[27] inspired in the DNA. The GCP is usually focused in undirected graphs, but

directed graph can be colored as well [114].

Permutation graphs are treated in [98] and [3]. Graphs with long paths are

solved in [144], but speci�c problems can appear solving these graphs as noted

in [103]. Furmanczyk [46] used mixed graphs with directed and non directed

edges. Herrmann in [58] deals with critical graphs.

2.3.3 Swarm Intelligence for Graph Coloring

As we have mentioned, the SI has been applied to the solution of a lot of math-

ematical problems, including GCP solution. The ACO and PSO approaches are

the most used, relegating other SI algorithms, such as the �ocking behaviors, to

the background.

The �rst work that we �nd using ants to GCP solving is [25] where the

ants are used to perform the coloring of a graph. We can see a survey of ACO

applications in [55]. An algorithm using a chaotic ant colony is proposed in

[51]. Borkar[9] introduces an incremental learning component. Lu[84] introduces

a memetic algorithm for graph coloring also using ants. Dowsland [34] have

improve the classical ACO algorithm. Another ant based algorithm appears in

Bui [15].

The PSO has been used in Cui [28] for GCP where a modi�ed PSO using dis-

turbances is used, obtaining better results than standard PSO in planar graphs.

Hsu [61] adding a modi�ed turbulence to previous PSO, obtained better results

in 4-colorable graphs solving them e�ciently and accurately.

The use of �ocking behavior SI has been forgotten, but SI is powerful enough

to solve the GCP. We demonstrate [53] that SI can color graphs. Adding the

gravitational law and a method for escaping from local optimum we build a

competitive algorithm based in �ockng SI [116, 115]. In the SI category we can

include agent based algorithm like [140], but there are no more references.

2.4 GCP Applications

The GCP can be applied to a wide number of areas. In Demange [30] is applied

in robotics. Clustering dynamics of nonlinear oscillator network using graph

24 CHAPTER 2. STATE OF THE ART

coloring in Wu [139]. A monthly crew scheduling problem with preferential bid-

ding in the airline industry is solved in Gamache [49]. Communication protocols

in Buck [14].

The GCP is a particular case of an optimization problem with quadratic

constraints. The mapping procedure and an appropriate parameter-setting pro-

cedure are detailed by Talavan [130] to solve it.

Experiments with graphs are shown in Lewandowski [80] applied to schedul-

ing. Lewis [81] applied GCP solution in round-robin sports scheduling.

Chapter 3

GCP Algorithms

This chapter gives a description of the algorithms that have been applied to solve

the GCP, focusing on the state-of-the-art algorithms used as competitors to the

Gravitational Swarm wich will be explained in detail in forthcoming chapters.

The structure of the chapter is as follows: Section 3.1 gives an introductory

view of the algorithms. Algorithms are described in deail as follows: Back-

tracking in Section 3.2, DSATUR in Section 3.3, Tabu Search in Section 3.4,

Simulated Annealing in Section 3.5, Ant Colony Optimization in Section 3.6,

Particle Swarm Optimization in Section 3.7, and �nally Gravitational Swarm in

Section 3.8.

3.1 Graph Coloring Problem methods

We have implemented 6 GCP solving methods as described in the literature:

Backtracking, DSATUR, Tabu Search, Simulated Annealing, Ant Colony Opti-

mization and Particle Swarm Optimization. These methods have been proved

individually to solve the GCP, but there is no reported direct comparison be-

tween them. We have developed a new algorithm called Gravitational Swarm

Intelligence that is included in this comparison, after proving that our algorithm

works with the GCP. A description of each algorithm follows:

1. Backtracking is an exhaustive deterministic algorithm that explores all

the search space and always returns the optimal solution if it exists. As

the GCP is a NP-complete problem we can use backtracking only in small

size problems or special types of graphs like the Mycielski graphs. This

25

26 CHAPTER 3. GCP ALGORITHMS

algorithm always return the same solution for the same graph instance.

Backtracking is no useful with medium size or big graphs, because it needs

a huge computational time.

2. Looking for smart initializations that may help to obtain solutions faster,

we propose an initialization approach that looks for the biggest clique

in the graph, using it to �x the initial number of colors needed to color

the graph. Then starts the BT search to determine the coloring of the

remaining nodes of the graph. The clique of a graph [12] is a subset of its

nodes such that every two nodes in the subset are connected by an edge.

It will be necessary at least the same number of colors k as the clique

degree to color the graph.

3. DSATUR (Degree of Saturation): this algorithm developed by Brèlaz [11]

is a greedy color assignment algorithm which goes only once on each node.

The algorithm tries to color �rst the highest degree nodes, as far as they

are disconnected.

4. Tabu Search (TS): it is a random local search with some memory of the

previous steps, so the best solution is always retained while exploring

the environment [111]. TS needs a great amount of memory to keep the

solutions visited, and if the Tabu list is big, it will need so much time to

search in the Tabu list indeed.

5. Simulated Annealing [117]: inspired in the annealing performed in metal-

lurgy, this probabilistic algorithm �nds solutions randomly. If a solution

is worse than the previous solution it can nevertheless be accepted as the

new solution with a certain probability that decreases with a global pa-

rameter called temperature. Initially, the temperature is big and almost

all the solutions are accepted, but as the temperature cools down, only

the best solutions are selected. This process allows the algorithm to avoid

being trapped in local optima. This algorithm has a big handicap when

applied to solve the GCP, because there are a lot of neighboring states that

have the same energy value. Despite this handicap, Simulated Annealing

algorithm provides state-of-the-art results for this problem[99].

6. Ant Colony Optimization (ACO): we have build an implementation fol-

lowing [51] where we have nxn ants making clusters around the colors.

We have n ants in each of the n nodes. Each ant is labeled with a ran-

domly selected color, and the color of a node is equal to the color of the

3.1. GRAPH COLORING PROBLEM METHODS 27

maximum size group of ants of the same color in this node, i.e. is decided

by majority voting. In each step, the ants that have a color di�erent from

the node's color move through the edges to the neighbor nodes. With the

exiting ants and the new incoming ants, the color of each node is again

evaluated until the problem is solved.

7. Particle Swarm Optimization (PSO): we have built a PSO version of [61]

for graph coloring. The PSO algorithm uses the knowledge of the agents on

the problem solution. After each step the agents know if they improve their

last state and also if the overall system has found an improved solution.

With a given probability value the bad colored agents try �rst to go back

to their own best known position. Then with other probability value the

bad colored agents try to go back to the system's best position. We have

added a parameter that alter the probabilities, making easy to escape from

poor local minima in the �rst stages of the algorithm, but more di�cult

as the time goes on. We also have added a random probability to change

good agents color using the local and global probabilities.

8. Gravitational Swarm for Graph Coloring (GSGC): this algorithm is in-

spired in the Gravitation physic law of Newton, and the Boids swarm of

Reynolds [119]. The gravitation law has been previously used in Swarm

Intelligence for function minimization [113], unrelated to the GS-GC for-

mulated as GSI in [116]. This algorithm does not try to mimic exactly a

physical system obeying Newton's law. The GS-GC consist in a group of

agents representing the graph nodes navigating in a world where the colors

are represented as goal locations that exert an attraction to the agents.

When an agent arrives to a goal it can get corresponding color and stop

moving if there are no other agents that can't have the same color for

the GCP solution, called agents that repel. Initially a random position

is selected for each agent. Depending on its position relative to the color

goals, the agent moves toward the nearest color goal until reaching it. If

there are agents that repel settled in that goal, been an agent that repel

a node that can't have the same color, then the agent tries to expel the

agent that repel outside the goal to a random position before going itself

inside. If it is no able to expel the agent that repel then the agent is

expelled to a random position and starts again looking for a stable color

goal. Otherwise the agent holds the goal color position and stops moving.

If all the agents are stopped then the algorithm has solved the GCP.

28 CHAPTER 3. GCP ALGORITHMS

All the algorithm implementations allow for a sequential search of the graph's

chromatic number. Starting from an upper bound, the GCP is solved for de-

creasing numbers of colors, until reaching a number when the algorithm does

not reach a feasible solution. The previous number is assumed as the chromatic

number.

3.2 Backtracking (BT)

The BT algorithm performs an orderly recursive search of color node assign-

ments on the graph looking for a graph coloring with the required number of

colors. The algorithm is exhaustive, therefore if any solution exists it will be

found, but its computational cost is exponential in the number of nodes. If

the order of the nodes doesn't change, the algorithm always returns the same

coloring solution. If we try to solve the chromatic number problem, then all

the search space must be explored. An intuitive description of the algorithm

is as follows: each graph node can be viewed as a level of a search tree: Tree

nodes at this level correspond to color assignments to this node. This tree is

explored in a depth-�rst procedure. At each tree node, an evaluation of the

correctness of the color assignment as a graph coloring is performed, if the test

fails (i.e. two adjacent nodes have the same color) the search bactracks, pruning

the subsequent subtree from the search. The order of picking the graph nodes

may in�uence the search time employed to �nd a solution for the �rst time. If

we allow the algorithm a bounded computational time, and the algorithm can't

solve the problem in such time then the algorithm doesn't return any kind of

solution.

Algorithm 3.1 provides an iterative speci�cation of the BT, equivalent to

a recursive search. Let us introduce some relevant notation, G = (V,E) is

the graph to be colored, whose nodes are enumerated in an arbitrary order

V = {1, . . . , N} , Ai = {j |(i, j) ∈ E } is the set of nodes adjacent to node i ∈ V ,
Wi ⊆ C is the set of colors that have been tried on node i, C = {1, . . . ,M} is
the set of colors, and c is the current color test.

3.2.1 Special BT initialization

Finding the biggest clique, we can start the process assigning colors to the

nodes in the clique so the algorithm needs less backtracks than the original

BT. It is important to order the nodes according to the clique nodes. This

3.3. DSATUR 29

Algorithm 3.1 Backtracking algorithm for graph coloring

Set initial values ∀i ∈ V ;Wi = Ø; C (i) = 0.

initialize i = 1, c = 1,

while 1 ≤ i ≤ N

set C (i) = c

if ∀j ∈ Ai, C (j) 6= C (i) /test coloring correctness/

then i← i+ 1

elseif c < M

then c← c+ 1

else Wi = Ø, C (i) = 0,

bactrack i← i− 1, c← C (i) + 1, Wi ←Wi ∪ C (i)

endelseif

endwhile

if i = 0 the algorithm has failed.

Algorithm 3.2 Clique initilization of BT graph coloring

1. Find the biggest clique BC and arrange the nodes of the clique �rstV BC

then the V − V BC nodes ramdomly.

2. Color the V BC with the �rst |V BC | colors.

3. Apply the BT algorithm to

way the algorithm start with �xed colored nodes. Finding the biggest clique

of a graph can be a hard job, so we look for the �rst biggest clique and then

we apply the standard BT algorithm as speci�ed in Algorithm 3.2, where BC

is the biggest clique, V the number of nodes, V BC the nodes of the clique,

|V BC | the cardinality of V BC and k ∈ {1, 2, ..., C}set of colors, where C must

be C > |V BC |.

3.3 DSATUR

The DSATUR algorithm is a greedy color assignment algorithm whose underly-

ing reasoning is that coloring �rst high degree nodes it is easier to �nd a correct

30 CHAPTER 3. GCP ALGORITHMS

Algorithm 3.3 DSATUR graph coloring algorithm

set Di = di; C (i) = 0; ∀i ∈ V ; V1 = V ; c∗ = 1

sort nodes in V1 such that Di ≥ Di+1

init i = 1

while i ≤ N

compute Ri = {C (j) ; j ∈ Ai ∧ C (j) > 0}
if Di > |Ri| and |Ri| > 0

then Di = |Ri|
sort nodes in Vi such that Di ≥ Di+1

elseif |Ri| = 0

then C (i) = 1 /any used color/

elseif |Ri| = c∗

then c∗ = c∗ + 1; C (i) = c∗; Vi+1 = Vi − {vi}; i = i+ 1;

else C (i) = min {c∗ − k; k ∈ Ri}; Vi+1 = Vi − {vi}; i = i+ 1;

endelseif

endif

endfor

coloring minimizing the number of colors. There algorithm assigns colors to

nodes in the order of the degree of saturation, which is either the node's degree

for nodes whose adjacent nodes have not been colored, or the number of colored

adjacent nodes. The algorithm does not search for a coloring with a restricted

set of colors, but for the minimum number of colors, the chromatic number.

Algorithm 3.3 provides an speci�cation of the algorithm. Let be di = |Ai| the
node's degree, Di the variable containing the degree of saturation, Vi denotes

the remaining nodes to be colored, so that V − Vi is the set of nodes that have
already been colored.

Theorem 18. [11] The DSATUR algorithm is exact (provides the chromatic

number) for bipartite graphs.

3.4. TABU SEARCH (TS) 31

3.4 Tabu Search (TS)

We have implemented a straighforward application of the Tabu Search to graph

coloring, where we consider the complete color assignment to the graph as the

current tested solution. The tabu list stores color assignments, and the gener-

ation of a new solution involves changing some color assignment of a node. It

is managed as a First-In-First-Out list, regardless of the solution quality. The

solution quality Q (Ct (i)) is the number of nodes whose color assignment is not

correct, i.e.

Q (Ct (i)) = |V − {i |∀j ∈ Ai; Ct (j) 6= Ct (i)}| , (3.1)

where Ai is the set of adjacent nodes to node i. The Tabu Search tries to

minimize this energy-like function. This approach is di�erent from the TabuCol

algorithm [6, 48] where each node maintains an independent tabu list of color

transitions. Our algorithm's computational �ow is as follows:

� In the Initialization phase, we assign randomly colors to graph nodes for

the set of M colors.

� Perform a number of iterations controlled by the time counter t, at each

iteration perform

� the generation of a new solution C′ from the previous iteration solu-

tion Ct (i), changing color of a node whose coloring is not correct. If

this new solution is already in the tabu list then repeat the genera-

tion of a new solution until it is not in the tabu list. In Algorithm

3.4 we denote the tabu list at iteration L by Lt.

� If the quality function of the new solution C′ is better (lower) or

equal than the previous solution, then keep it and store the previous

solution in the tabu list.

� If the assigned colors produce a successful graph coloring then iteration

search is stopped.

The tabú list has a limit size, the tabu tenure, if we exceed the tabu tenure, then

we delete the older instances of the Tabu tenure. In our current implementation,

the size of the Tabu tenure is directly related with the number of iterations

(maxiter) so it's quite di�cult to exceed the size of the list, but is possible.

As it is the algorithm avoids getting stuck in local minima because we can't

repeat a color that has been previously used and also we change dynamically

32 CHAPTER 3. GCP ALGORITHMS

Algorithm 3.4 Tabu Search for graph coloring

Generate an initial random solution Ct(i) ∈ {1, . . . ,M} ;∀i ∈ V , t = 0.

set the initial tabu list Lt = Ø

for t = 1, . . . ,maxiter

Generate C′ a new solution from Ct−1 (i) s.t. C′ /∈ Lt−1
if Q (Ct−1 (i)) ≥ Q (C′ (i))
then Ct (i) = C′ (i); Lt = Lt−1 ∪ Ct−1 (i)

if Q (Ct (i)) = 0 the search stops �nding a correct coloring

endfor

the bad colored node. The description of the algorithm is given in Algorithm

3.4. The computational cost of this algorithm grows with the Tabu tenure and

the number of graph edges, because of memory needed to keep the list, and time

to travel through the list at each step of the algorithm to test if the solution has

been already tested.

3.5 Simulated Annealing (SA)

We have implemented our own version of the classical Simulated Annealing (SA)

algorithm [67, 117] tailored to the GCP. The cooling schedule is a very fast one,

the temperature parameter β is the number of remaining computational steps.

Thus the algorithm stops when the temperature reaches to zero if it hasn't �nd

a graph coloring solution before. Algorithm 3.5 provides an speci�cation of the

SA algorithm. The energy function to be minimized is the coloring quality of

equation (3.1). In this algorithm p denotes a random value between 0 an 1 gen-

erated to perform the decisión of acceptance/rejection of the new solution. As in

the Tabú search algorithm, candidate new solutions are produced by randomly

changing the color assignment of a randomly picked node. Notice in the speci-

�cation of the acceptance decision, that if the new candidate solution improves

the previous one the exponent will be positive and the candidate solution will

always be accepted.

3.6. ANT COLONY OPTIMIZATION (ACO) 33

Algorithm 3.5 Simulated Annealing for graph coloring

Generate an initial random solution Ct(i) ∈ {1, . . . ,M} ;∀i ∈ V , t = 0.

for t = 0, . . . ,maxiter

Generate C′ a new candidate solution from Ct−1 (i); β = maxiter− t

if e−
1
β (Q(C′(i))−Q(Ct−1(i))) > p

then Q (Ct (i)) = Q (C′ (i))
else Q (Ct (i)) = Q (Ct−1 (i))

if Q (Ct (i)) = 0 successful stoping of the algorithm

endfor

3.6 Ant Colony Optimization (ACO)

We have de�ned and implemented an ACO algorithm for the GCP. Ants have

two attributes: (1) a color that can not be changed, (2) the actual node where

they are. Ant move from node to node of the graph across the existen graph

edges, therefore they could reach any node from any other node that is connected

to it by a path over the graph. The ACO algorithm starts creating N2 ants,

meaning that we create N ants for each one of the N nodes. Ants' intrinsic color

is randomly drawn from the set of colors C = {1, . . . ,M}. At each iteration

dynamics of the ants over the graph are as follows:

1. For each node the color assignment is decided by majority voting of the

ants placed in the node.

2. Ants that are in minority in the node, regarding the color assignment are

sent to adjacent nodes. Target nodes whose color assigment is equal to the

ant color are preferred, if there isn't any then the ant is moved randomly.

3. Nodes attract from the adjacent nodes the ants with the same color as their

color assignment. Ties are solved in favor of the node with the maximum

number of ants of the same color.

4. If a node is depleted of ants, then new N ants with random colors are

generated for that vertice. Therefore the population of ants can grow

unboundedly, though this is a very unlike situation.

Each iteration ends testing if the color assignment to the nodes is a correct

graph coloring. Intuitively it is expected that this algorithm will converge to a

34 CHAPTER 3. GCP ALGORITHMS

graph coloring, if the number of colors is above the chromatic number, because

step #3 above ensures that no two adjacent nodes will have the same color

assignment in a stationary state. Ants not contributing to the color assignment

(minority ants) �ow searching for nodes where they can stay. Step #4 ensures

that no node will remain uncolored. If the graph's chromatic number is greater

than M, then the algorithm will not converge to a stationary state, ants will

keep moving inde�nitely. A potential evolution of the system is an unbounded

growth of the number of ants, but we have not found this behavior in our

experiments. The algorithm stops after maxiter iterations. The amount of

memory needed and the computational time of this algorithm can be very big,

and code parellelization wouldn't help because we will need as many processes

as ants, and the communication between process will be too much expensive.

The detailed speci�cation of the algorithm can be seen in Algorithm 3.6. In

this algorithm, t is the iteration number, a = (ca, va) ∈ A denotes an ant,

where ca ∈ C is the ant's color, and va ∈ V is the node where the ant is placed

currently. Let us denote Ai = {a |va = i|} the set of ants at node i, and A the

complete set of ants.

3.7 Particle Swarm Optimization (PSO)

The PSO is an innovative random search algorithm that is been applied to a

lot of problems. The GCP doesn't escape to this trend and there are a lot of

algorithm based in Swarm Intelligence for this problem. We have de�ned and

implemented a basic version of a PSO algorithm for GCP. Because the problem

is discrete, the particle evolution equations will be applied to the probabilities

of color assignment instead of the color assignment itself. Therefore, the PSO

becomes a probabilistic PSO or Markovian PSO.

A particle corresponds to a node in the graph. Each particle's state is given

by a probability distribution of the color assignment to the node:

si = {p1, . . . , pM} ,

where pk ≥ 0 and
∑
k pk = 1. The global state of the system at time t is given

by

S (t) = {si (t) ; i ∈ V } .

The evolution of the particles is guided by color assignment quality of equation

3.7. PARTICLE SWARM OPTIMIZATION (PSO) 35

Algorithm 3.6 Ant Colony Optimization algorithm for graph coloring

Generate N random colored ants a = (ca, i) ∈ Ai for each node i ∈ V

for t = 0, . . . ,maxiter

compute Ct (i) = arg max
c
|{a |(ca = c) ∧ (va = i)}|

/ migrate minority ants/

for i = 1, . . . , N

for each a ∈ Ai s.t. ca 6= Ct (i)

if ∃j ∈ Ai s.t. ca = Ct (j)

then va = j

else va ∈ Ai picked randonly

endfor

/ break con�icting colorings/

for each (i, j) ∈ E s.t. Ct (i) = Ct (j)

if |Ai| > |Aj |
then ca = i;∀a ∈ Aj
else ca = j;∀a ∈ Ai

endfor

/ solve depleted nodes/

for each node i s.t. Ai = Ø

generate N random colored ants a = (ca, i)

endfor

if Q (Ct (i)) = 0 stop report successful coloring

endfor

36 CHAPTER 3. GCP ALGORITHMS

3.1. To determine the best local solution, we attend to the local version of this

equation

Q (Ct (i))|j = |Aj − {k |∀k ∈ Aj ; Ct (j) 6= Ct (k)}| . (3.2)

The dynamics of the system are as follows:

1. Particles' states are initialized as uniform probability distributions
{
pk = 1

M

}
.

2. Color assignments to nodes are performed sampling the local color distri-

bution.

3. Global and local quality functions are computed, determining new local

and global optimal solutions. The algorithm stops when a correct graph

coloring has been reached.

4. Evolution of each particle state follows the conventional PSO equation.

The algorithm is presented in Algorithm 3.7, where sli is the best local solution.

Sg = {sgi ; i ∈ V } is the best global solution. Correspondingly, qli is the best value
of the local quality function of node i, and qg is the best value of the global

quality function. Parameters αt and βt control respectively the contribution of

the local and global optima in the updating of the particle state. Finally, ri (t)

denotes random additive term.

3.8 Gravitational Swarm for Graph Coloring (GS-

GC)

For completeness, a pseudo-code of the Gravitational Swarm for Graph Coloring

(GS-GC) algorithm for GCP is presented in Algorithm 3.8. Chapter 4 is devoted

to a detailed description of the algorithm, as well as some convergence theoretical

results.

3.8. GRAVITATIONAL SWARM FOR GRAPH COLORING (GS-GC) 37

Algorithm 3.7 Particle Swarm Optimization

Generate a initial state with uniform distributions per particle

S (0) =

{
si =

{
pk =

1

M
; k = 1, . . . ,M

}
; i ∈ V

}
.

initialize Sg = S (0), sli = si (0), qli = qg =∞

for t = 1, . . . ,maxiter

/ evolve particles/

for each i ∈ V
si (t) = si (t− 1) + αts

l
i + βts

g
i + ri (t)

endfor

/ compute graph color assignment/

for each i ∈ V
obtain Ct (i) = sample of color probability distribution si (t)

if qli ≥ Q (Ct (i))|j
then qli = Q (Ct (i))|j ; sli = si (t)

endfor

if qg ≥ Q (Ct (i))

then qg = Q (Ct (i)); Sg = S (t)

if Q (Ct (i)) = 0 the algorithm stops successfully

endfor

Algorithm 3.8 Gravitational Swarm for Graph Coloring

1. deploy goal colors GC and agents V randomly in the space.

2. asign a random position to agents that repel V e

2. Move(V i)→ GC

3. if V i ⊂ GCk

then C(V i) = k

4. if ∀V ∃E(i, j) | C(Vi) = C(Vj)

then randomly V e ← i ∨ j
go to 2

38 CHAPTER 3. GCP ALGORITHMS

Chapter 4

Gravitational Swarm

Intelligence

This chapter contains the central contribution of the thesis from the formal and

theorical point of view. Later chapters report the empirical support for the GCP

solving approach. We give an intuitive description of the Gravitational Swarm

for Graph Coloring (GS-GC) algorithm, and some theoretical results in the limit

case under some simpli�cations. The natural inspiration of our algorithm does

not come from living beings, such as ants, bees or birds, but from a basic physics

law: the gravitational atraction between objects. We construct a world where

agents navigate through the space attracted by the gravitational pull of speci�c

objects, the color goals, and may su�er speci�c repulsion forces, activated by

the friend-or-foe nature of the relation between agents induced by the adjacency

relation in the underlying graph.

The chapter is organized as follows: Section 4.1 gives an intuitive descrip-

tion of the algorithm as it is currently implemented. Section 4.2 recalls the

de�nition of the GCP. Section 4.3 formalizes the most general Gravitational

Swarm giving some basic asymptotic convergence results. Section 4.4 spe�cies

the Gravitational Swarm for the GCP solving, giving asymptotic convergence

results.

39

40 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

4.1 Gravitational Swarm for GCP

Initial de�nitions: Let be G = (V,E) a graph de�ned on a set of nodes

V = {v1, . . . , vN} and edges E ⊆ V × V . We de�ne a group of GS-GC agents

B = {b1, b2, ..., bN} each corresponding to a graph node. Each agent navigates

inside a square planar toric world according to a speed vector −→vi . At any

moment in time we know the position attribute of each agent pi(t) = (xi, yi)

where xi and yi are the cartesian coordenades in the space. When t = 0 we

have the initial position of the agents pi(0) = (x0i, y0i). Suppose that we want

to color the graph with K colors, denoting C = {1, 2, ...,K} the set of colors,

where K must not be lower than the chromatic number of the graph for the GS-

GC to converge. We assign to these colors, K �xed points in space, the color

goals CG = {g1, . . . , gK}, endowed with a gravitational attraction resulting in a

velocity component −→vgc afecting the agents. The attraction force decreases with

the distance, but a�ects all the agents in the space.

GS-GC de�nition: We can model the system as a tuple

F = (B,CG, {−→vi} ,K, {−→ai,k} , R) (4.1)

where B is the set of GS-GC agents, {−→vi} the set of agent velocity vectors at

time instant t, K the hypothesized chromatic number of the graph, and {−→ai,k}
are the attraction forces of the color goals exerted on the agents. R denotes the

repulsion forces in the neighbourhoord of color goals.

Agent velocity: The dynamics of each GS-GC agent in the world is speci�ed

by the iteration:

−→vi (t+ 1) =

0

d · −−→ai,k∗

vr · (pr − pi)

ci ∈ C& (λi = 1)

ci /∈ C

(ci ∈ C) & (λi = 0)

, (4.2)

where d is the distance of the agent's position pi to the position of the nearest

color goal gk∗ ,
−−→ai,k∗ represents the attraction force to approach the nearest goal,

and vr is the magnitude of a random vector moving the agent towards a random

position pr when it is expulsed from a color goal. Parameter λi represents the

e�ect of the degree of Comfort of the GS-GC agent. When a GS-GC agent bi

reaches a color goal in an instant t, its velocity becomes 0.

4.1. GRAVITATIONAL SWARM FOR GCP 41

Dynamics inside the color goal: When the euclidean distance between

an agent and the color goal is below a threshold nearenough, the agent stops

moving and the corresponding graph node is assigned to this color. We denote

the set of agents whose position is in the region of the space near enough to a

color neighbourhood of the color as

N (gk) = {bi s.t. ‖pi − gk‖ < nearenough} . (4.3)

We denote the fact that the node has been assigned to the corresponding color

assigning value to a the agent color attribute

bi ∈ N (gk)⇒ ci = k. (4.4)

The initial value of the agent color attribute ci is zero or null. Inside the

spatial neighbourhood of a color goal there is no further gravitational atraction.

However, there may be a repulsion force between agents that are conected with

an edge in the graph G. This repulsion is only e�ective for agents inside the same

color goal neighbourhood. To model this e�ect, we de�ne function repulsion

which has value 1 if a pair of GS-GC agents have an edge between them, and

0 otherwise. The repulsive forces experimented by agent bi from the agents in

the color goal gk are computed as follows:

R (bi, gk) =
∑
N(gk)

repulsion (bi, bj) . (4.5)

Comfort dynamics: Each time step that the GS-GC agent stays in a color

goal without been disturbed, its Comfort increases, until reaching a maxi-

mum value maxconfort. When another GS-GC agent bi outside the color goal

gk∗ tries to go inside the neighborhood of that color goal, the repulsion force

R (bi, gk∗) is evaluated. If the repulsion force is greater than zero then the in-

coming agent is challenging the stability of the color neighbourhood and at least

one agent must leave the goal, which can be the incoming agent itself. If the

Confort values of the challenged agents are bigger than 0 then their Comfort

decreases. If the Confort reaches 0, then the agent is expelled from the color

goal to a random position in space pr with velocity vr. In equation (4.2) when

Comfort is positive the parameter has value λi > 0. If the Repulsion force is

greater than zero and the Comfort of a GS-GC agent bi inside that goal is equal

to 0 then λi = 0 and bi is expelled from the color goal. When all the GS-GC

42 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

agents stop, i.e. ∀i,−→vi = 0 we have f (B,CG) = n of equation 4.6 and the GCP

of assigning K colors to graph G is solved.

Intuitive convergence discussion: The cost function de�ned on the global

system spatial con�guration is:

f (B,CG) = |{bi s.t. ci ∈ C & R (bi, gci) = 0}| . (4.6)

This cost function is the number of graph nodes which have a color assigned and

no con�ict inside the color goal. The agents outside the neighbourhood of any

color goal can't be evaluated, so it can be a part of the solution of the problem.

The dimension of the world and the de�nition of the nearenough threshold

allows controlling the speed of convergence of the algorithm. If the world is big

and the nearenough variable is small then the algorithm converges slowly but

monotonically to the solution, if the world is small and the nearenough variable

is big the algorithm is faster but convergence is jumpy because the algorithm

falls in local minima and needs transitory energy increases to escape them. The

reason of this behaviour is that the world is not normalizad and the magnitude

of the velocity vector can be bigger than the color goal spatial in�uence and can

cross a goal without falling in it.

Each color goal has an attraction well spanning the entire space, therefore

the gravitational analogy. But in our approach the magnitude of the attraction

drops proportionally with the Euclidean distance d between the goal and the

GS-GC agent, but it never disappears. If ‖d‖ < nearenough then we make

d = 0, and the agent's velocity becomes 0 stopping it.

Flow diagram speci�cation: A simple version of the �owchart the internal

logic working of each GS-GC agent is given in �gure 4.1. The simpli�ed �owchart

start in the green transitory state. Then select a ramdom position for the agent.

The agent goes toward the nearest goal attracted by the gravity of the goal, until

get inside a goal. In that moment the agent get the color of the goal and check

for repulsion forces. If there are no repulsion forces the agent stop, if not the

agent or an agent that repel is selected for expulsion of the goal and the system

start again. In this simpli�cation, we haven't mention the friend-or-foe relation,

nor the optimization to avoid goal with repulsion forces.

The �owchart of �gure 4.2 shows the internal logic working of each GS-GC

agent. This �owchart is de�ned for each agent, and can happend that two agents

4.1. GRAVITATIONAL SWARM FOR GCP 43

Figure 4.1: Simpli�ed Flowchart

44 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

Figure 4.2: GS-GC agent behavior �owchart for GCP

4.2. GRAPH COLORING PROBLEM 45

arrives at the same state at the same time. To break such ties, we decided to

choose an aleatory order for the agents in order to avoid cicles in the behaviour

of the algorithm.

When all the agents are in a color goal without repulsion forces then they

move to Finish state and the problem solution is reported. If there are agents

still without a proper color then the proper colored agents must wait in the

�Stand By� state.

If an agent's confort reaches maxconfort value, then the �Increases Confort�

state is only a transition to the �Stand By� state, without increasing the confort

and witout a�ecting the overall behavior of the algorithm.

4.2 Graph coloring problem

An undirected graph is a collection of vertices linked by edges G = (V,E),

such that V = {v1, . . . , vN} and E ⊆ V × V , and (v, w) ∈ E ⇒ (w, v) ∈ E.

The neighborhood of a vertex in the graph is the set of vertices linked to it:

N (v) = {w ∈ V |(v, w) ∈ E }.

De�nition 19. Graph coloring. Let C = {c1, . . . , cM} denote a set of colors.

Given a graph G = (V,E), a graph coloring is a mapping of graph vertices to

colors C : V → C such that no two neighboring vertices have the same color,

i.e. w ∈ N (v)⇒ C (v) 6= C (w).

De�nition 20. Minimal graph coloring. A set of colors C∗ is minimal relative

to graph G = (V,E) if (1) there is a graph coloring C∗ : V → C∗ , and (2) for

any smaller set of colors there is no graph coloring using it: |C| < |C∗| ⇒ ¬∃C :

V → C. Alternative de�nition: any graph coloring on this graph has a greater

or equal set of colors C : V → C ⇒ |C| ≥ |C∗|.

De�nition 21. Chromatic number: The chromatic number M∗ is the number

of colors of the minimal graph coloring C∗.

4.3 Gravitational Swarm

De�nition 22. A Gravitational Swarm (GS) is a collection of particles P =

{p1, . . . , pL} moving in an space S subjected to atraction and repulsion forces.

Attraction correspond to long range gravitational interactions. Repulsions cor-

respond to short range electrical interactions. Particle attributes are: spatial

46 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

localization si ∈ S, mass mi ∈ R, charge µi ∈ R, set of repelled particles ri ⊆ P .
The motion of the particle in the space is governed by equation:

ṡi (t) = −mi (t)Ai (t) + µi (t)Ri (t) + η (t) , (4.7)

where Ai (t) and Ri (t) are the result of the attractive and repulsive forces, and

η (t) is a random (small) noise term. The attractive motion term is of the form:

Ai (t) =
∑

pj∈P−ri

mj (t) (si − sj) δAij , (4.8)

where

δAij =

{
‖si − sj‖−2 ‖si − sj‖2 > θA

0 ‖si − sj‖2 ≤ θA
. (4.9)

The repulsive term is of the form

Ri (t) =
∑
pj∈ri

µj (t) (si − sj) δRij .

where

δRij =

{
‖si − sj‖−2 ‖si − sj‖2 ≥ θR

0 ‖si − sj‖2 > θR
. (4.10)

Remark 23. The two delta functions have di�erent roles in the de�nition of

the GS. The attractive δAij corresponds to the inverse to the distance strength

of attraction. To avoids singular values when two particles are close to zero

distance we set a threshold θA which determines the region around the particles

where the motion due to attraction forces disappear. The repulsive δRij de�nes

the maximum extension of the repulsive forces, which are short range forces.

The threshold θR determines the region around the particles where the repulsive

forces are active.

Remark 24. We allow both mass and charge to be time varying. In exploratory

computational experimental works [116, 115] we have found that manipulating

them can be useful to enhance convergence, however we will not need them to

be time varying in the ensuing formal proofs.

Lemma 25. A particle pi reaches zero velocity when it is clustered with all

non repulsive particles and all repulsive particles are at distance greater than

the speci�ed threshold. Formally, when ‖si − sj‖2 ≤ θA for all pj ∈ P − ri, and
‖si − sj‖2 > θR for all pj ∈ ri.

4.3. GRAVITATIONAL SWARM 47

Proof. From the de�nition of particle velocity.

Lemma 26. A necessary and su�cient condition for all particles to reach zero

velocity, thus GS reaching an stationary state, is that for all pi, pl, pk if pl ∈
P − ri and pk ∈ P − rl , then pk ∈ P − ri. Equivalently, if pl ∈ ri and pk ∈ rl ,
then pk ∈ ri. In other words, the GS can reach an stationary state if only if the

attractive relation between particles forms an equivalence relation .

Proof. We prove necessary and su�cient conditions

� If: For each particle pi, the distance between pi and all particles in P −
ri will converge to zero. Particle positions will converge to an average

position s̄i = s̄j for al pj in P − ri . Particles in ri will be pushed to

a distance θR from s̄i. Thus both attractive and repulsive terms of the

particle speed will converge to zero.

� Only if: proven by contradiction. Assume that pk /∈ P − ri and

still we have stationary states. We have pk ∈ ri. Then pk will be

attracted to s̄i because pl ∈ P − ri and pk ∈ P − rl , i.e. pl is

attracted to pi and pk follows pl. However, when pk is below θR

distance of s̄i then the repulsive forces will be in e�ect. Therefore,

when attractive forces become zero because particles are inside a θA

distance, repulsive forces will be non zero for at least one of the

particles.

Lemma 27. Global convergence of GS. If the conditions of Lemma 26 hold,

any non stationary state of a GS leads to a stationary state.

Proof. For all particles in P − ri will be attracted to pi whatever the distance,

while all particles in ri will be moving away from pi until both distance terms

will be zero. For any P (t) and P (t+ 1), we have that the following holds:

‖si (t)− sj (t)‖ > ‖si (t+ 1)− sj (t+ 1)‖ ; pj ∈ P − ri,

until ‖si (t)− sj (t)‖ ≤ θA, and

‖si (t)− sk (t)‖ < ‖si (t+ 1)− sk (t+ 1)‖ ; pk ∈ ri,

until ‖si (t)− sk (t)‖ ≥ θR.

48 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

Remark 28. The condition of Lemma 26 implies that the GS can only reach

an stationary state if the graph de�ned by the repulsive relations consists of a

collection of disjoint cliques. For this the reason the GS applied to GCP needs

some additional stationary particles, and the attractive factor of equation 4.9 is

changed to equation 4.11.

Remark 29. The Lemma 27 means that the GS has robust global convergence,

any initial state will lead to a stationary state, if there is any one. This is a

highly desirable result, but limited even in the case of the basic GS.

4.4 Gravitational Swarm for GCP

De�nition 30. A GS P for the coloring of graph G = (V,E) with M colors is

constructed as follows. The set of particles consists of two subsets P = PC∪PV :
the vertex particles corresponding to the graph vertices PV = {p1, . . . , pN} and
static color particles PC = {pN+1, . . . , pN+M}. There is a bijective mapping of

graph vertices to particles φ : V → PV . The repulsive particles for each particle

are determined by the neighboring vertices in the graph:

ri =
{
p ∈ PV

∣∣φ−1 (p) ∈ N
(
φ−1 (pi)

)}
.

There is similar bijective map φC : C → PC from colors to color particles. The

mass of color particles may be much greater than the charge of vertex particles

mi � µj for pi ∈ PC , pj ∈ PV . Moreover, they are considered as static particles:

ṡi = 0; pi ∈ PC .

Besides, the velocity attraction term of the particles speci�ed by equation

4.8 is changed to

Ai (t) =
∑
pj∈PC

{
mj (si − sj) δAij

}
. (4.11)

Remark 31. Each vertex particle is attracted to its closest color particle accord-

ing to the di�erent color particle masses. The noise term in equation 4.7 has

the e�ect of breaking any compensation between forces that would cancel them.

It might be required to show that the con�guration of the particle positions

that lead to such cancelations are in a manifold of measure zero, so that the

system will never be stuck in an instable stationary state, but we believe that

such mathematical depth is beyond the scope of the letter.

4.4. GRAVITATIONAL SWARM FOR GCP 49

Lemma 32. A vertex particle of a GS-GC reaches zero velocity if and only if

it is at distance below θA of a color particle and no repulsive particle is in θR

range.

Proof. We prove the necessary and su�cient conditions.

� If: by de�nition of particle velocity in equations4.7 and 4.11 all terms of

the equation will be zero.

� Only if: by contradiction. Assume that the particle has zero velocity and

it is either out of range of a color particle or within range of a repulsive

particle. Then, either the attractive or the repulsive terms will be di�erent

from zero. Therefore the particle velocity will be non-zero unless there is

some cancelation e�ect. The mass of the color particles can be made big

enough to avoid any cancelation between attractive and repulsive forces.

Cancelation of attractive forces has an arbitrarily small probability and the

noise term in equation 4.7 moves the GS-GC from such unstable stationary

states.

Remark 33. The noise term in equation 4.7 has to be small enough not to push

a vertex particle outside of a color particle region of in�uence.

Corollary 34. Distances between color particles must be above the repulsive

range ‖si − sj‖2 > θR for pi, pj ∈ PC , pi 6= pj to ensure that colored particles

can reach zero velocity, avoiding repulsive interaction between colored particles.

Remark 35. When a vertex particle reaches a zero velocity it has attained a

locally correct coloring of its corresponding vertex in the graph.

De�nition 36. The neighborhood of a color particle pi ∈ PC is the set of vertex

particles inside its threshold of attractionN (pi) =
{
pj ∈ PV

∣∣∣‖si − sj‖2 ≤ θA∣∣∣}.
Color particle neighborhoods are disjoint N (pi) ∩N (pi′) = Ø for any pi 6= pi′ ,

because a particle can not be in two places simultaneously.

De�nition 37. A global state of the GS-GC is the vector composed of all vertex

particles positions s = {si; pi ∈ PV }.

De�nition 38. A global state of the GS-GC is stationary if all the particle

velocities are simultaneously zero: ∀pi ∈ P ; ṡi = 0. Color particles are station-

ary by de�nition, therefore the stationary is a property required of the vertex

particles.

50 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

Theorem 39. A global state of the GS-GC is stationary if and only if all

vertex particles are placed in the neighborhood of some color particle without

any repulsive particles located at the same color particle neighborhood:⋃
pj

N (pj) = PV , (4.12)

pi ∈ N (pj)⇒ N (pj) ∩ ri = Ø. (4.13)

Proof. We prove the necessary and su�cient conditions:

� If: Let pj , pj′ ∈ PC , pj 6= pj′ . Each vertex particle in a color particle neigh-

borhood has a zero attraction velocity term pi ∈ N (pj) ⇒ Ai (t) = 0.

Moreover, all particles are in some color particle neighborhood, therefore

all attraction terms will be zero. Furthermore, all mutually repulsive par-

ticles are in di�erent color particle neighborhoods: pk ∈ ri ⇒ pk ∈ N (pj′)

being outside repulsive range ‖si − sk‖2 > θR, therefore the vertex particle

repulsive term is also zero Ri (t) = 0.

� Only if: by contradiction. Assume that the GS-GC is in a stationary state,

but the theorem conditions do not hold.

� If equation 4.12 does not hold, then there is at least one particle

which is outside all color particles whose attraction term is non-zero

∀pj ∈ PC ; pi /∈ N (pj) ⇒ Ai (t) 6= 0. Thefore, the GS-GC is not in

an stationary state.

� If equation 4.13 does not hold, then two mutually repulsive particles

are in the same color particle, therefore their repulsive term is non-

zero,

pi ∈ N (pj) ∧N (pj) ∩ ri 6= Ø⇒ Ri (t) 6= 0,

consequently the GS-GC state is not stationary.

Remark 40. Theorem 39 implies that we need that the number of color particles

has to be in relation with the graph chromatic number. Next theorems establish

this relation.

Theorem 41. If the graph's chromatic number M∗ is smaller than or equal

to the number of color particles M∗ ≤ M , there will be a non-empty set of

stationary states of the GS-GC.

4.4. GRAVITATIONAL SWARM FOR GCP 51

Proof. By construction. There is at least one optimal graph coloring C∗ : V →
C∗, from which we can construct one stationary state of the GS-GC as follows:

� Assign M∗ color particles to the colors in C∗, i.e. φC (ci) = pN+i, the last

M −M∗ color particles will remain without color assignment.

� Translate the coloring map into a partition of vertex particles in color

particle neighborhoods:

C∗ (v) = c⇒ φ (v) ∈ N (φC (c)) .

Remark 42. Theorem 41 builds the stationary state corresponding to the op-

timal graph coloring. However, a graph coloring obtained by the GS-GC may

be sub-optimal if the number of color particles is greater than the chromatic

number. Nevertheless, we need to be sure that any stationary state corresponds

to a graph coloring, i.e. there are no spurious stationary states that can not be

translated into a graph coloring.

Theorem 43. Any stationary state of the GS-GC corresponds to a graph col-

oring.

Proof. Given an stationary state we can build a graph coloring as follows:

� Each graph vertex is colored. By Theorem 39 in a stationary state each

vertex particle pi ∈ PV belongs to a color particle neighborhood pi ∈
N (pj), pj ∈ PC , therefore it is colored accordingly:

pi ∈ N (pj)⇒ C
(
φ−1 (pi)

)
= φ−1C (pj) .

� The coloring is correct: By Theorem 39 in a stationary state pi ∈ N (pj)⇒
N (pj) ∩ ri = Ø, therefore neighboring graph vertices will have di�erent

colors:

vk ∈ N (vi)⇒ pk ∈ ri ⇒ C
(
φ−1 (pi)

)
6= C

(
φ−1 (pk)

)
⇒ C (vi) 6= C (vk)

Remark 44. Any stationary state of the GS-GC corresponds to a graph color-

ing. Any graph coloring corresponds to a GS-GC stationary state. There are

52 CHAPTER 4. GRAVITATIONAL SWARM INTELLIGENCE

no spurious stationary states. Finally, what happens if we underestimate the

number of color particles needed to represent the graph coloring?

Theorem 45. If the graph's chromatic number is greater than the number of

color particles, there are no stationary states in the GS-GC.

Proof. By contradiction. M∗ is the chromatic number. Assume that an GS-GC

with M < M∗ has any stationary state. This stationary state can be translated

into a graph coloring with M colors by Theorem 43, therefore the chromatic

number is M contrary to the initial assumption.

Remark 46. Theorem 45 implies that the GS-GC will not converge to an station-

ary state if the number of color particles is lower than the chromatic number.

However, lack of convergence does not allow us to give any conclusion about the

chromatic number of the graph because it may be due to the dynamics of the

GS-GC. We need to establish the existence of global convergence conditions,

and the relation of the GS-GC parameters to the speed of convergence. In our

preliminary results we have introduced mechanisms in the GS-GC dynamics

which equivalent to manipulation of the charge of the vertex particles. We are

working on the formalization of such process for its analysis.

Remark 47. The problem of determining the chromatic number can be related

to the GS-GC dynamics. We have been considering bottom-up and top-down

approaches. In the bottom-up approach, the system is initialized with a low

number of color particles. Lack of convergence is interpreted as the need to

add some color particle to reach the chromatic number. Top down approaches

start with a large number of color particles. After �nding a stationary state,

the number of color particles is reduced and the search restarted, until lack

of convergence. A third line of research is to establish some conditions on the

color particles masses that would induce some order on the convergence of vertex

particles to color particle neighborhoods, so that the chromatic number might

be obtained as a by-product of the GS-GC system dynamics.

Chapter 5

Parameter tuning

In this chapter we deal with the sensitivity of the GS-GC to the �ne tuning of

its parameters. We try to determine both its robustness against poor settings

of parameters, and the optimal range of values for sensitive parameters.

The chapter structure is as follows: Section 5.1 gives the introductory de-

scription of the parameters. Section 5.2 gives summary experimental results on

the KRG graphs. Section 5.3 reports sensitivity results on the color goal ra-

dius. Section 5.4 reports sensitivity results on the comfort parameter. Section

5.5 reports the results of non-parametric statistical tests assessing the statistical

signi�cance of the results. Section 5.6 gathers the concluding remarks explaining

the paramter settings for following computational experiments.

5.1 GS-GC model parameters

In the proposed GS-GC algorithm we have three parameters that must be tuned

to get the best result. These parameters are:

� The chromatic number,

� the color goal radius of its in�uence region and

� the Comfort.

The world size is irrelevant for GS-GC, because the agents' speed adapts to the

world size. If the world is bigger, agents go faster. The color goal radius also

limits the in�uence of the world size. We have experimented over a toric world

of 100x100 units of length to simplify the arithmetical calculus. Finally we have

53

54 CHAPTER 5. PARAMETER TUNING

a limit on the number of steps to avoid enormous execution times, in the order

of days, weeks of months. Obviously this parameter doesn't a�ect the accuracy

of the algorithm, it is only a stopping criterion. We have run computational

experiments testing our model for tuning the goal radius and the comfort. For

this sensitivity experiment we have speci�cally built ten families of 20 instances

each families of KRG graphs.

1. 6-colorable graphs of 30 nodes and 50 edges.

2. 4-colorable graphs of 45 nodes and 90 edges.

3. 5-colorable graphs of 60 nodes and 150 edges.

4. 7-colorable graphs of 75 nodes and 180 edges.

5. 8-colorable graphs of 90 nodes and 200 edges.

6. 9-colorable graphs of 105 nodes and 230 edges.

7. 10-colorable graphs of 120 nodes and 250 edges.

8. 11-colorable graphs of 135 nodes and 270 edges.

9. 12-colorable graphs of 150 nodes and 330 edges.

10. 13-colorable graphs of 165 nodes and 360 edges.

We have a total of 200 graph instances.

5.2 Experimental results on 30-50 KRG graphs

The global experimental design consists in running GS-GC with changing the

parameters as shown in the table 5.1, for the sensitivity exploration over the

KRG graphs. Speci�cally table 5.1 gives the average accuracy results of GS-

GC on the 20 KRG generated graphs of 30 nodes, 50 edges and 6 colors. For

each graph we have repeated 1,000 times the application of GS-GC with speci�c

parameter values limiting the number of steps in each execution to 100. The stop

condition is small because we wanted to make a large number of experiments to

extract conclusions on the e�ect of the parameter, no abut the accuracy of the

algorithm. Therefore, table 5.1 summarizes the results of running the GS-GC

algorithm 20x48,000 times. Accuracy values correspond to the number of times

that the GS-GC �nds a correct coloring. The hypothetical chromatic number

5.2. EXPERIMENTAL RESULTS ON 30-50 KRG GRAPHS 55

Radius
Comfort 1 10 20 30 40 50 60 70 80

0 0 0 8.35 118.15 178.05 147.7 74.9 36.1 8.1

1 0.05 248.4 712.1 880.35 837 738.8 607.6 357.8 95.8

5 0 197.05 688 816.15 787 725.1 640 379.55 99

10 0 153.45 686.8 787.5 778.1 721.6 646.25 386.1 104.4

15 0.1 141.6 684.25 787.75 772.55 720.15 644.55 383.2 100.05

20 0.05 135.9 689.15 782.7 773.8 721.7 644.35 389.3 100.35

Table 5.1: Average accuracy results of GS-GC on the 20 KRG generated graphs
of 30 nodes, 50 edges and 6 colors for varying comfort (rows) and radius
(columns) parameter values

(the number of color goals) is set to the exact value (6 in this table). The

observation of the table shows that moderate values of comfort and color goal

radius give the best results. Radius seems to play a more important role in

GS-GC, but null comfort is catastrophic, results fall below pure random choice.

5.2.1 Chromatic number

This parameter can not be tuned because it is an input parameter related with

the graph. If we know the chromatic number in advance, the algorithms can use

this knowledge. If not, we must guess the chromatic number. Some theorems

help to know a priori this number but we can not always apply them.

We have implemented a waterfall approach, where an upper bound and a

lower bound are given to the algorithm. The upper bound must be big enough

to solve the problem. If the algorithm can solve the GCP with this number

then decreases the upper bound one unit and try to solve the problem again

with this new chromatic number. The algorithm repeats this behavior until the

chromatic number reaches the lower bound or after a �xed amount of time the

algorithm is unable to �nd a solution, been the chromatic number the previous

tested number.

In this sensitivity analysis work we always have used graphs with a known

chromatic number so we never need to follow the waterfall approach. We let

the upper bound equal to lower bound equal to the chromatic number.

56 CHAPTER 5. PARAMETER TUNING

5.3 Goal Radius

The goal radius is a very important parameter because it determines the color of

the agents. In our approach there is an attraction over the entire search space

center towards the goals. When an agent in near enough to a goal then we

assume that the agent's color becomes the color of the goal. But when we can

say that an agent is near enough?. The goal radius determines this distance.

When the euclidean distance of an agent to the nearest goal is less than this

radius then we assign that color to the agent.

dist(a, b) =
√

(ax − bx)2 + (ay − by)2. (5.1)

When an agent goes towards a goal and when the agent enters inside the

goal radius it is going to take the goal color, why don't we assign that color to

the agent?. The agent trajectory doesn't change until get inside a goal. The

reason is that that agent get the color goal if there are no repulsion forces inside

the goal, and that information change along the time. If two agents that repel

move towards the same goal and we assign that color to the agents, as they

are agents that repel one must change it's trajectory towards another color,

but immediately the system assign the new color to the agent and in the same

time that agent can �nd agents that repel with it's color. The result is that

the system is jumpy because there is no transition between states. The system

doesn't converge.

The experimental results show that the goal radius is very important in the

accuracy of the algorithm. As we can see in �gure 5.1 when the goal radius is

small (1 or 10) the algorithm performance is very low. The same happen with

big radius (70 or 80). When the goal radius is between 30 and 50, we get the

best results. The families with small number of nodes get the best result in the

surroundings of radius 30. When the number of nodes grow, the best radius

moves towards a bigger radius. The biggest graph families achieve the best

result in radius of about 50 units. The Goal radius change with the number of

nodes until a critical point where the performance of the algorithm falls. We

have plot the results in 3D to have another point of view in �gure 5.2.

In �gure 5.3 we have plot the average number of steps need to �nd a solution.

If the algorithm don't manage to �nd a solution then the number of steps is

100. The graphic is very similar to the average success graphic. This is logical

because failing �nding a solution implies 100 steps, so if in the goal radius tested

5.3. GOAL RADIUS 57

Figure 5.1: Average success ratio vs Goal Radius

58 CHAPTER 5. PARAMETER TUNING

Figure 5.2: Average success ratio vs Goal Radius in 3D

5.4. COMFORT 59

Figure 5.3: Average Steps ratio vs Goal Radius

are a lot of fails, then the number of steps must be big. We can see that not

always this is true. The graph family 60x150 and 75x180 are very fast with

small radius even though they didn't get the best result with that radius. So

small radius looks faster than big radius. We can observe that the tuning of

the parameters can be made very quickly, although we have make a loot of

experiment. We also have seen that average radius is the best choice. We have

use this result for the accuracy experiments in the next chapter.

5.4 Comfort

The comfort is a special parameter that allow the algorithm escape from local

minimum, and also contributes to the stability of the system. When an agent

gets inside a goal it stops moving and according to it's comfort wait until the

system stops or other agent try to expel it from it's color. Without this pa-

rameter, the system would have the same problem as assigning the color before

60 CHAPTER 5. PARAMETER TUNING

Figure 5.4: Average success ratio vs Comfort

reaching to a goal, the system behavior would be unstable because the agents

will be jumping form one goal to another. The problem of the local minimum

is that an agent reaching a colorgoal stops inside it. If this color is incorrect for

the agent, we need a mechanism to expel the agent towards another goal. That

mechanism is Comfort.

In �gure 5.4 we can see that the comfort is necessary for the system to get

good results. Without if the algorithm fails. But which values is the best?. The

system behavior is more or less stable from comfort value equal to 5 to comfort

value equal to 20. That means that the comfort value is necessary to be bigger

than zero, but is independent to the exact value. We have plot again the results

in 3D to have another point of view in �gure 5.5.

In �gure 5.6 we can see average number of steps need to �nd a solution. As

in the goal radius case, when the algorithm don't manage to �nd a solution the

number of steps is 100. It is clear that if the comfort is zero, then the number

of steps is almost 100. We can see that the number of steps with comfort equal

5.4. COMFORT 61

Figure 5.5: Average success ratio vs Comfort in 3D

62 CHAPTER 5. PARAMETER TUNING

Figure 5.6: Average steps ratio vs Comfort

to one are best, but it is not clear, because sometime, this is not true as we

can see in graph families 45x90 and 60x150. When the comfort is �ve of above

�ve, then the systems behavior is more stable. We have assume that the best

comfort is �ve, and we have use it in our experiments. As we have said before,

setting this parameter is done very quickly, and with this results, it worthless

to worry about it.

5.5 Nom Parametric Tests

We want to show in a formal way that the qualitative conclusions obtained on

visual inspection of the results plots are statistically signi�cant. For that reason

we apply some non parametric test to the result obtained. We are going to use

the Friedman test [45, 44]. If the null hypothesis of this test is not comply then

we can use a post-hoc test like Nemenyi's [97].

5.5. NOM PARAMETRIC TESTS 63

5.5.1 Friedman test

The Friedman test is a non parametric test that was originally developed by

the economist Milton Friedman. This test can be applied when we have n

groups and k treatments to these groups. We order the results of applying the

k treatment to each group in a table of n rows and k columns. Then we assign

ranking to the k treatments to each row rn,k where the best result is assigned

1 and the worst result is assigned k. If there are ties then we assign an average

value.

Then we have to calculate the average rankings of each treatment as:

Rk =

n∑
i=1

ri,k

n
(5.2)

The null hypothesis indicates that all the treatments behavior. Under the

null-hypothesis, which states that all the algorithms are equivalent and so their

ranks Rk should be equal, the Friedman statistic is:

χF =
12n

k(k + 1)

[∑
k

Rk −
k(k + 1)2

4

]
(5.3)

This statistic follows a χ2stochastic distribution of Pearson [105] of k − 1

degrees of freedom. If the Friedman values is bigger than the null hypothesis

then we can say that the treatment are statistically di�erent so now we can make

a post-hoc test of the treatments. If the Friedman values if smaller than the

null hypothesis then we can't say that the treatments are statistically di�erent,

so all the treatments behavior are similar.

As the Friedman test sometimes if quite conservative, Iman and Davenport

[64] introduce an improvement to the Frieman stochastic value.

χID =
(n− 1)χF

n(k − 1)− χF
(5.4)

That follows a F of Fisher-Snedecor [127, 40] stochastic distribution with

k − 1 and (k − 1)(n− 1) degrees of freedom.

5.5.2 Friedman test to GS-GC

We have applied the Friedman test over the two parameters that we are testing.

The Goal Radius and Comfort. In tables 5.2 and 5.3 we can see the ranking for

64 CHAPTER 5. PARAMETER TUNING

Graph\Radius 1 10 20 30 40 50 60 70 80

Graph 30x50 9 7 4 2 1 3 5 6 8
Graph 45x90 9 8 3 1 2 4 5 6 7
Graph 60x150 9 7 2 1 3 4 5 6 8
Graph 75x180 9 7 3 2 1 4 5 6 8
Graph 90x200 9 7 4 1 2 3 5 6 8
Graph 105x230 9 7 5 4 1 2 3 6 8
Graph 120x250 9 7 5 4 2 1 3 6 8
Graph 135x270 9 7 5 4 2 1 3 6 8
Graph 150x330 9 7 5 4 2 1 3 6 8
Graph 165x360 9 7 5 4 3 1 2 6 8

Rk 9 7.1 4.1 2.7 1.9 2.4 3.9 6 7.9

Table 5.2: Friedman ranking for Goal Radius

Graph\Comfort 0 1 5 10 15 20

Graph 30x50 6 1 2 3 5 4
Graph 45x90 6 5 4 3 2 1
Graph 60x150 6 5 4 3 2 1
Graph 75x180 6 3 1 2 4 5
Graph 90x200 6 1 2 4 5 3
Graph 105x230 6 1 2 5 4 3
Graph 120x250 6 1 2 5 4 3
Graph 135x270 6 1 2 3 5 4
Graph 150x330 6 1 2 5 3 4
Graph 165x360 6 5 4 3 1 4

Rk 6 2.4 2.5 3.6 3.5 3.2

Table 5.3: Friedman ranking for Comfort

each graph and value o goal radius and comfort and the average rankings Rk

5.5.2.1 Goal Radius

The Friedman value for goal radius is χF = 71.333. The value of the chi-square

statistic with eight degrees of freedom and a probability of accepting the null

hypothesis with 0.9 is χ2 = 13.4, with 0.95 χ2 = 15.5 is and with 0.99 is

χ2 = 20.1. We can see that in the tree cases, the Friedman value is bigger than

the null hypothesis so we can say that the goal radius values are statistically

di�erent and now we can practice a post-hoc test.

But we are going to use the Iman-Davenport improvement. So new value is

χID = 74.077. The new null hypothesis with 8 and 72 degrees of freedom and an

5.5. NOM PARAMETRIC TESTS 65

accepting probability of 0.9, 0.95 and 0.99 are F (8, 72) = 1.757, F (8, 72) = 2.07

and F (8, 72) = 2.769. We can see that in the tree cases, the Iman-Davenport

value is bigger than the null hypothesis so we can say that the goal radius values

are statistically di�erent

We can see that the goal radius equal to one is always get the worst behavior.

The goal radius 80 is the second worst, and also the goal radius 10 and 70.

These four rows have a stable behavior with all the data sets, so we don't

need a parametric test to state that these values don't a�ect to the overall

behavior of the system, so we have repeated the Friedman test without taking

into account these columns. The new values for Friedman and Iman-Davenport

are χF = 14.72 and χID = 5.241. The null hypothesis for Friedman with 5

degrees of freedom and acceptance probability of 0.9, 0.95 and 0.99 are χ2 =

9.24.4,χ2 = 11.8, and χ2 = 12.8, and for Iman-Davenport with 5 and 45 degrees

of freedom are F (5, 45) = 1.98, F (5, 45) = 2.422, and F (5, 45) = 3.454. In this

case, the Friedman value and the Iman-Davenport value are next to chi square

and F values but are still bigger so the goal radius parameter is statistically

di�erent even in this special scene.

5.5.2.2 Comfort

The Friedman value for comfort is χF = 28.457. The value of the square-chi

with �ve degrees of freedom and a probability of accepting the null hypothesis

with 0.9 is χ2 = 9.24, with 0.95 χ2 = 11.1 is and with 0.99 is χ2 = 12.8. We can

see that in the tree cases, the Friedman value is bigger than the null hypothesis

so we can say that the comfort values are statistically di�erent and now we can

practice a post-hoc test.

Again, we are going to use the Iman-Davenport improvement. So new value

is χID = 11.889. The new null hypothesis with 5 and 45 degrees of freedom and

an accepting probability of 0.9, 0.95 and 0.99 are F (5, 45) = 1.98, F (5, 45) =

2.422 and F (5, 45) = 3.454. We can see that in the tree cases, the Iman-

Davenport value is bigger than the null hypothesis so we can say that the comfort

values are statistically di�erent

We can see that the comfort equal to zero is always get the worst behav-

ior. This row has a stable behavior with all the data sets, so we don't need a

parametric test to state that this value don't a�ect to the overall behavior of

the system, so we have repeated the Friedman test without taking into account

this column. The new values for Friedman and Iman-Davenport are χF = 9.84

66 CHAPTER 5. PARAMETER TUNING

and χID = 2.936. The null hypothesis for Friedman with 4 degrees of free-

dom and acceptance probability of 0.9, 0.95 and 0.99 are χ2 = 7.78,χ2 = 9.49,

and χ2 = 11.1, and for Iman-Davenport with 4 and 36 degrees of freedom are

F (4, 36) = 2.12, F (4, 36) = 2.65, and F (4, 36) = 3.95. In this case, the Fried-

man with a probability of 0.9 states that this values are statistically independent,

but with a probability bigger than 0.95, the null hypothesis is accepted so the

comfort values are not statistically independent, so being di�erent from zero is

enough for this parameter. Applying the Iman-Davenport test, only when the

probability of acceptance is bigger than 0.99 the null hypothesis is accepted and

can conclude that the parameters are not statistically independent.

5.5.3 Post-Hoc test: Nemenyi's test

As we can proof that that goal radius and comfort values are statistically in-

dependent, we are going to pass a Post-hoc test. This test consist of looking

at the data when all the experiments have concluded, and try to �nd patterns

that were not speci�ed a priory. We use the Nemenyi's test [97]. This test is

similar to the Tukey's test [132] and is used when all classi�ers are compared

to each other. The performance of two classi�ers is signi�cantly di�erent if the

corresponding average ranks di�er by at least the critical di�erence CD:

CD = qα

√
k(k + 1)

6n
(5.5)

where critical values qα are based on the Studentized range statistic divided by√
2.

In �gure 5.7 we can see the result of applying the Nemenyi's test to the

goal radius, using all the nine values and with an acceptance of the 90%. The

CD values is 3.497. There are four groups that join di�erent values of the goal

radius. In �gure 5.8 using all the nine values and an acceptance of 95%, the CD

value is 3.802, bigger. We have now �ve groups, and the diagram is a big mess.

The information that we can extract from this diagram is very small. In �gure

5.9 using all nine values and an acceptance of 99%, the CD value is 4.399, the

biggest. Here we come back to the four groups, but still this result doesn't help

to much.

In �gure 5.10 we can see the Nemenyi's test result on the goal radius, but

now without taking into account the goal radius equal to 1, 80, 70 and 10, in

the same way that we have made with the Friedman test. We have now only

5.5. NOM PARAMETRIC TESTS 67

Figure 5.7: Nemenyi's diagram for 9 goal radius and 90% of acceptance

Figure 5.8: Nemenyi's diagram for 9 goal radius and 95% of acceptance

Figure 5.9: Nemenyi's diagram for 9 goal radius and 99% of acceptance

68 CHAPTER 5. PARAMETER TUNING

Figure 5.10: Nemenyi's diagram for 5 goal radius and 95% of acceptance

Figure 5.11: Nemenyi's diagram for 5 goal radius and 99% of acceptance

�ve radius and with an acceptance of 95% the CD values is 1.93. There are two

groups, but all the values of the goal radius are more of less linked. In �gure 5.11

using �ve values and an acceptance of 99%, with a CD values equal to 2.3, it is

more clear that the goal radius between the values 20 and 60 don't a�ect too

much to the behavior of the algorithm. We have only one group. Although the

Friedman test tell us that the goal radius values are statistically independent,

the Nemenyi's test shows that it's not true, at least for the central values, but

even including the outliers, the Nemenyi's test is di�erent respect to Friedman.

In �gure 5.12 we can see the Nemenyi's test result on the Comfort values,

using the six values and with an acceptance of 95%, the CD values is 2.384. It

is very clear that the value of comfort zero, and all the values above zero, are

disconnected in the diagram. We can say that the comfort must be di�erent to

5.5. NOM PARAMETRIC TESTS 69

Figure 5.12: Nemenyi's diagram for 6 comfort values and 95% of acceptance

Figure 5.13: Nemenyi's diagram for 6 comfort values and 99% of acceptance

zero, but if doesn't matter the exact value. In �gure 5.13 using six values and

an acceptance of 99%, the CD value is 2.816. The CD values is bigger but the

result don't change respect to the 95% acceptance.

In �gure 5.14 we have made an quick experiment. As long as the Friedman

test has said that the comfort value, without taking into account the zero value,

are statistically dependent. We don't need to use a Post-hoc test as Nemenyi's,

but we have applied the test to the �ve values and an acceptance of only 90%.

The CD values is 1.739. The diagram shows that there is only one group for all

the values, so the Friedman test was right, the comfort values bigger than zero

are statistically dependent.

70 CHAPTER 5. PARAMETER TUNING

Figure 5.14: Nemenyi's diagram for 5 comfort values and 90% of acceptance

5.6 Concluding remarks

In conclusion, we can use a color goal radius between 30 and 60, because the

non parametric test results said that the results after setting goal radius in this

range are statistically independent, we are going to �x the goal radius equal

to 30 for the additional computational experiments. The value 30 is because

the algorithm works very fast with this value in small graphs, and we are going

to work over small graphs to compare our results with slow methods as Tabu

Search or ACO methods. The comfort value must be bigger that zero. We are

going to �x the comfort value equal to 5, because when the comfort is 5, the

behavior of our algorithm looks more stable.

Chapter 6

Graph Coloring Results

In tis chapter we report an exhaustive comparison of perfomance results between

the proposed algorithm and state of the art algorithms. We run the algorithms

on the experimental benchmark graph families described in Appendix A follow-

ing two basic strategies. (a) the chromatic number is set to the already known

chromatic number, and (b) applying a sequential strategy to �nd the chromatic

number.

The structure of the chapter is as follows: Section 6.1 decribes the basic ele-

ments of the experimental design. Afterwards the results on the speci�c graph

families are reported: trees and bipartite graphs in Section 6.2, Kuratowski

graphs in Section 6.3, Mizuno graphs in Section 6.4, KRG graphs in section 6.6,

DIMACS graphs in section 6.6. Section 6.7 reports experiments on the sequen-

tial determination of the chromatic number. Finally, section 6.8 summarizes the

results giving some conclusions.

6.1 Experimental design

We have prepared a big bank test to assess that our GS-GC algorithm get

good results is a wide range of problems. We start testing on the Mycielski

graphs [96]. These graphs are easy to solve, but they are a good start point.

With Mycielski we have accurately tuned the most critical parameters of our

algorithms, the goal radius and comfort maximum value. With the parameters

obtained with previous test we have applied seven GCP solving algorithms:

1. A Backtracking greedy algorithm (BT).

71

72 CHAPTER 6. GRAPH COLORING RESULTS

2. Brelaz [11] famous DSATUR algorithm (DS)

3. Clique initilization of BT (CBT)

4. An stochastic simulated annealing (SA) [117].

5. A Tabu search (TS) [87].

6. And three Swarm Intelligence based algorithms:

(a) Ant Colony Optimization (ACO) [57]

(b) Particle Swarm Optimization (PSO) [39]

(c) Gravitational Swarm Intelligence (GS-GC) [116]

The �rst three algorithms are deterministic so they run only once on eahc graph.

For the rest �ve heuristics we have repeated the algoritm execution 30 times for

each method and graph. As the GCP is NP-Complete, for some graphs we

would need a lot of time (perhaps years) to solve them so we have limit them

to an amount of step depending on the complexity of each algorithm.

� The BT and CBT single steps are computationally light, therefore we have

allowed them 10.000.000 steps.

� The DS has as many steps as nodes.

� The SA with a medium complexity step, we have allowed 100.000 steps.

� The TS, PSO and our GS-GC have a maximum of 10.000 steps, because

each iteration of PSO and GS-GC are complex algorithm that need a lot

of time for each step and TS because it needs a lot of memory to allocate

the Tabu list and it is also quite slow.

� For the ACO we only allow it 1.000 steps because, even though it has the

same complexity of Swarm algorithms, the number is agents (ants) grows

very fast with the size of the graphs making this algorithm the slowest

because needs more mathematical calculus than any other.

We have obtained results on the benchmark graph familis describe in Appendix

A: tree and bipartite graphs, kuratowski based planar graphs, Mizuno's method

3-colorable graphs, new developed graphs called KRG and �nally well-known

DIMACS graphs. Sucess is measured as the number of times that an algorithm

obtains a valid coloration of the graph.

6.2. TREES AND BIPARTITE GRAPHS 73

Figure 6.1: Trees and bipartite success ratio

6.2 Trees and bipartite graphs

A tree is a connected graph without cycles. A bipartite graph is a graph that

does not contain any odd-length cycles. We have test over these graphs because

their chromatic number is 2 and we assume that this graphs are easy to color.

We have use 30 di�erent trees and 30 di�erent bipartite graphs of 100 nodes.

As we can see in �gure 6.1 the trees are more di�cult as we expected.

The deterministic algorithms rarely can �nd the solution and the stochastic

algorithm except the Simulated Annealing, all of them fail solving these graphs.

The SA reached a 100% success ratio for these graphs.

The bipartite graphs meet better our assumptions. The PSO is the only

algorithm that fails in all the experiments. The behavior of the SA is strange

for its poor performance compared with previous results. The TS also gets poor

results. The other four algorithms including our GS-GC give 100% of success

(GS-GC only 90%). These results show that even the simplest graphs can be

hard to solve, and that our algorithm, as we will show later, is not always the

best.

74 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.2: Trees and bipartite average time in seconds

In �gures 6.2 and 6.3 we can see the average time and number of steps for

each algorithm. The number of steps is normalized to 1.000. We can see the

big di�erence between the time and the steps. The PSO time for trees is only

a pair of seconds. This is one of the reason of using steps instead of seconds,

besides abstracting from the computer architecture.

6.3 Kuratowski based planar graphs

We have generated planar graphs using the Kuratowski theorem because we

have an upper bound of the chromatic number, that is 4. We have built our own

graph generator. We have generated 25 families of 10 graph each family. This

families are grouped by the number of nodes, starting from 10 and increasing

the number of nodes adding 10 more nodes until reaching to a family with 250

nodes. The number of edges have been calculated E = n ∗ 2.

In �gures 6.4 we can see that instances with few nodes are easy to solve

and all the algorithms can cope with them, but when the number of nodes

grows, only our GS-GC algorithm is robust against the size of the graph. Again

the SA gets good results but it also fails when the number of nodes goes over

180 nodes. A very important feature of the Swarm based algorithms is their

6.3. KURATOWSKI BASED PLANAR GRAPHS 75

Figure 6.3: Trees and bipartite average number of steps

Figure 6.4: Kuratowski based graphs success ratio

76 CHAPTER 6. GRAPH COLORING RESULTS

scalability property, because we divide the problem into small tasks that the

agents can carry on with a low e�ort. The most wealthy part of these algorithm

is to join the information of all the agents and decide if the problem is solved or

not. In the results we can see that our GS-GC algorithm �nd the solution of the

problem near 100% in all the cases, but the PSO fails below 20% with graphs

of only 100 nodes. This means that PSO fall into local minimum easily because

the agents have memory about their local best and the global best and with

only four colors there are little variants. In the GS-GC algorithm the agents

only worried about themselves so is more di�cult to fall in local minimum. The

ACO algorithm reduces it's accuracy near linearly, without big jumps or falls.

As we can say the number of ant or agents grows faster than GS-GC or PSO so

the size of the problems a�ects directly to it's performance, but with a parallel

programing this algorithm can get better results.

In �gure 6.5 it can be seen that the time grows directly proportional to the

size of the graphs. The values of the TS in green illustrate this very clear.

But not all the algorithms performance grow the same. GS-GC, PSO and SA

time grow slowly compared with the other algorithms. DS is fast but obtain

bad results. For the GS-GC algorithm it has a simple explanation, with a big

success ratio the time is small but this is not true for PSO or even SA. The

relation between success and steps is evident in �gure 6.6. This �gure is like the

�gure 4 invested.

6.4 Mizuno's 3-colorable

Mizuno had developed a method to built hard 3 colorable instances of graphs.

These instances are a good test because you can try over very di�cult graphs

with a known chromatic number. A small chromatic number can made some

algorithm run faster and �nd the solution in a short time. The process of

building a graphs consist of merging two special graph instances call MUGS

(there are 12 MUGS). And then apply some actions to ensure that the new

graph is 3 colorable. The process can be replied as many times as you wanted

adding di�erent MUGS to the results.

The �gure 6.7 show the results over 25 families of 10 graph instances. The

�rst family is the simples merging two MUGS. The next family is two iterations

of the methods, until applying 25 iterations of the methods. As the MUGS num-

ber of nodes and nodes is not the same for each MUGS, the resulting instances

6.4. MIZUNO'S 3-COLORABLE 77

Figure 6.5: Kuratowski based graphs average time in seconds

Figure 6.6: Kuratowski based graphs average number of steps

78 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.7: Mizuno's graphs success ratio

are no homogeneous, like Kuratowsky's graphs.

In the �gure we can di�erent two groups of behaviors. PSO, TS and ACO

start with very poor results and very quickly the success ratio fall near zero.

The BT and CBT non deterministic algorithms start as the best method for

small instances and fall slowly towards zero. These two algorithms only have

di�erences is small graphs, with large graph the have the same results. SA has

similar results as BT and DS, and like them it has big jumps with di�erent

families.

Our GS-GC algorithm start with average result under the 60 % of accuracy,

but it's performance decreases more slowly than all the others, achieving the

best result in medium and large instances. This behavior comes again by the

Swarm approach.

In �gure 6.8 we can see the results in seconds. The BT and CBT even though

obtain good results, the computational time is very big. The DS works fast but

with poor results. The ACO time is also big as we expected. PSO and TS are

very quick and stable, because the perform bad results from the beginning and

the success ratio don't a�ect them. SA is again the fastest and GS-GC this time

penalized the dimension of the instances. As we have said the GS-GC algorithm

6.5. KRG GRAPHS 79

Figure 6.8: Mizuno's graphs average time in seconds

has been generated to be a parallel algorithm and a parallel implementation will

show better results in time.

Figure 6.9 show the results in steps. The �gure as similar as the success

ratio but changing the y axis. The only remarkable thin is that The number of

steps of the deterministic algorithms is very similar as GS-GC's although the

GS-GC obtain better results.

6.5 KRG graphs

The KRG graphs are a special family of graphs inspired in Kuratowsky's theo-

rem and developed ad-hoc for this research. The idea is to built planar graphs

in a �rst step and then add a clique of cardinality N been N >= 4. With this

assumption, we can ensure that the chromatic number of the graph is N. This is

true because through the Graph Theory we know that planar graph's chromatic

number is 4, and also that the lower bound of the chromatic number of a graph

is the graph's biggest clique. Then our KRG graphs G lower bound is N, and

the upper bound of the gr pah G-c is 4 so the chromatic number if the graph G

is N.

80 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.9: Mizuno's graphs average number of steps

We have prepared two sets of experiments. The �rst one start with three

families of graphs with 100 nodes and 300 edges, 400 edges and 500 edges. The

maximum number of edges E of a planar graph G={V,E} is E=V*3-3. The

KRG graphs don't need to ful�lls this rule, so we can have a 100 node graph

with more than 297 edges. For each graph family we have apply a N=4, N=5,

N=6 and N=7 so �nally we have 12 families of 10 graphs. We have use these

families to show empirically that the KRG graphs are good for testing.

In �gure 6.10 we can see three graphics. The �rst one the four chromatic

number graphs of 300 edges, second with 400 edges and �nally with 500 edges.

The �rst thing we can see is that the complexity of KRG graphs decreases

inversely with the chromatic number. The success ratio of N=7 graphs is bigger

than N=4 graphs. The second thing is that the KRG graphs chromatic number

is equal to N.

The results are quite di�erent from previous experiments. The GS-GC is

almost always the best algorithm and in most cases near 100% of success. The

PSO algorithm results are the second best results even winning out GS-GC

algorithm in KRG_100_300_7 family. The ACO results are pretty good in the

300 and 400 edge families, been the Swarm algorithms the best accurate in this

6.5. KRG GRAPHS 81

Figure 6.10: KRG success ratio

82 CHAPTER 6. GRAPH COLORING RESULTS

experiment. The results in the 500 edge family are quite di�erent, the ACO

and SA can't �nd a solution in any instance. The SA usually a good algorithm,

here is the worst. The TS, BT and CBT behavior is similar as other test. The

DS is very fast but poor.

In �gure 6.11 we can see that the time in seconds need for TS and ACO

is very big compared with the other methods. The BT, CBT and PSO are

average in computational time. SA as we expected is the fastest in almost all

the instances, but our GS-GC algorithm is very slow with complex graphs with

small chromatic number but near as fast as SA in graphs with a big chromatic

number, been even better is some experiments.

The steps graphics behavior is similar as success graphics, changing the y

axis. The results are in �gure 6.12.

With this experiments we have shown that the KRG graphs really complies

with our assumption. Now we are going to test with bigger graphs to extend

the results obtained. We have built 4 new families of 500 nodes and 1400 edges,

100 nodes and 2800 edges, 1500 nodes and 4200 edges and 2000 nodes ans 5600

edges. We have again applied N=4, N=5, N=6 and N=7 so we have test over

16 graphs families.

The results are signi�cantly di�erent. The results of the ACO and TS are

worst, because now we have big graphs, exactly the scenery where these algo-

rithm have problems. All the algorithms fails solving the N=4 instances, except

our GS-GC, and even with problems. This is because these instances are very

hard.

There is a disappointing result with graphs with N=6 and N=7. Our algo-

rithm is the best with N=4 and N=5, gets good results with N=6 and N=7 but

it is beaten by CBT, BT and ACO, and also by the PSO algorithm in the 500

and 100 node's families. The results are in �gure 6.13

In �gure 6.14 we have the computational time. Here again we get a surprise.

Our method, that we expected to be very fast appears more slowly. Even the

TS is faster. We have to say that the result obtained is not bad compared with

ACO and CBT, but the other four methods have managed to beat it in di�erent

tests.

In �gure 6.15 we see more di�erences with previous experiments. Now the

success graphic and steps graphs are no as similar as before. The results of the

GS-GC algorithm are better having into account only the steps, with a di�erence

with the best algorithms in N=6 and N=7. The PSO algorithm needs always

more steps, even thought get better results in some tests.

6.5. KRG GRAPHS 83

Figure 6.11: KRG average time in seconds

84 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.12: KRG average number of steps

6.5. KRG GRAPHS 85

Figure 6.13: Big KRG success ratio

86 CHAPTER 6. GRAPH COLORING RESULTS

Figure 6.14: Big KRG average time in seconds

6.5. KRG GRAPHS 87

Figure 6.15: Big KRG Average number of steps

88 CHAPTER 6. GRAPH COLORING RESULTS

6.6 DIMACS graphs

The DIMACS challenge in 1993 [68] was a great moment in the GCP community

because:

1. It was presented a format of representing graphs that has become to a

standard.

2. In that challenge appears a group of graphs for testing that cover a wide

range of graph types, that become a point of union in the research of graph

coloring, because that graphs appears as a reference in any paper since

then.

We have test over our own graphs and it is di�cult to compare with the litera-

ture, so we are going to go on testing with these graphs.

The �rst test has been over the Mycielski graphs because there are small

and easy to test.

Then we have choose the books graphs. These graphs are a group of graphs

from the Stanford GraphBase (SGB). The construction of this graphs is:

Given a work of literature, a graph is created where each node represents a

character. Two nodes are connected by an edge if the corresponding characters

encounter each other in the book. Knuth creates the graphs for �ve classic works:

Tolstoy's Anna Karenina (anna), Dicken's David Copper�eld (David), Homer's

Iliad (homer), Twain's Huckleberry Finn (Huck), and Hugo's Les Miserables

(jean).

We have also test the miles graphs, members of the SGB family. These

graphs are similar to geometric graphs in that nodes are placed in space with

two nodes connected if they are close enough. These graphs, however, are not

random. The nodes represent a set of United States cities and the distance

between them is given by by road mileage from 1947.

Another member of SGB family are the Queen Graphs. Given an n by n

chessboard, a queen graph is a graph on n^2 nodes, each corresponding to a

square of the board. Two nodes are connected by an edge if the corresponding

squares are in the same row, column, or diagonal. Unlike some of the other

graphs, the coloring problem on this graph has a natural interpretation: Given

such a chessboard,it is possible to place n sets of n queens on the board so that

no two queens of the same set are in the same row, column, or diagonal if and

only if the graph has coloring number n. Martin Gardner states without proof

that this is the case if and only if n is not divisible by either 2 or 3. In all cases,

6.6. DIMACS GRAPHS 89

the maximum clique in the graph is no more than n, and the coloring value is

no less than n.

Finally, we have test some graphs from Caramia [17] graph family called

CAR, the fullins graphs. These graphs are a generalization of myciel graphs

with inserted nodes to increase graph size but not density.

We have test �ve BOOKS graphs, �ve miles graph and 6 queens graphs, all of

them of the SGB graph family and fourteen graphs of the CAR graph family. In

the next table we show the basic layout of the test graphs, the number of nodes,

number of edges, the density that is D = 2∗|E|
|V |∗(|V |−1) , and also the chromatic

number. We have shown the results in table 6.1.

The two �rst columns are the graph name and the chromatic number given

by the authors in DIMACS [68].

BackTrack, CBT and DSATUR results are 0 or 100, because they success of

fail solving the problem.

In table 6.3 we have put the Mycielski graphs, with the CAR graphs, as they

as quite similar. The Myciels result con�rm our supposition that these graphs

are very simple to solve. But the fullins graph appear much more di�cult. In

almost all the experiments we get very poor result even 0 in a lot of cases, except

our GS-GC approach that gets good results even in the more complex graphs.

These graphs are particularly di�cult, because even some author claim that the

chromatic number is unknown.

The results of SGB graphs are printed in table 6.2. Books graphs are not

particularly di�cult except the homer graph. Our algorithm get results over

the 90% but it is not the best algorithm. SA appears again as a good approach

for this kind of graphs, as so the PSO, the TS usually a bad approach here get

good results.. The miles graphs are very hard and only our GS-GC manage

the solve them. Finally the queens graphs show a very hard face. The greedy

algorithm are the best. The results of the GS-GC, better than the other, are

very poor. The instance queens8_8 and queens9_9 failed to �nd the optimal

chromatic number. A coloring with 10 and 11 for this graphs have been found

instead.

In [90] try to solve anna and homer graphs using a Genetic Algorithm.

They can solve anna graph but no homer graph. As we have said our GS-

GC can solve all the books graphs. In [129] and [89] solve the SGB graphs

using another genetic algorithm, but fail �nding the optimum solution in the

CAR family. The results are shonw in table 6.3. Here again made a good

job in CAR family, and get good results in the SGB, perhaps they get better

90 CHAPTER 6. GRAPH COLORING RESULTS

Graph #Nodes #Edges Density #K

myciel3 11 20 0.363636364 4
myciel4 23 71 0.280632411 5
myciel5 47 236 0.218316374 6
myciel6 95 755 0.169092945 7
myciel7 191 2360 0.130063378 8
anna 138 493 0.052152756 11
david 87 406 0.108527132 11
homer 561 1629 0.010370512 13
huck 74 301 0.111440207 11
jean 80 254 0.080379747 10

miles250 128 387 0.047613189 8
miles500 128 1170 0.14394685 20
miles750 128 2113 0.259965551 31
miles1000 128 3216 0.395669291 42
miles1500 128 5198 0.639517717 73
queen5_5 25 160 0.533333333 5
queen6_6 36 290 0.46031746 7
queen7_7 49 476 0.404761905 7
queen8_8 64 728 0.361111111 9
queen8_12 96 1368 0.3 12
queen9_9 81 2112 0.651851852 10
1-FullIns_3 30 100 0.229885057 3
1-FullIns_4 93 593 0.138616176 4
1-FullIns_5 282 3247 0.08195149 5
2-FullIns_3 52 201 0.15158371 4
2-FullIns_4 212 1621 0.07247608 5
2-FullIns_5 852 12201 0.033655517 6
3-FullIns_3 80 346 0.109493671 5
3-FullIns_4 405 3524 0.043075419 6
3-FullIns_5 2030 33751 0.016388475 7
4-FullIns_3 114 541 0.083993169 6
4-FullIns_4 690 6650 0.027975852 7
4-FullIns_5 4146 77305 0.008996711 8
5-FullIns_3 154 792 0.067226891 7
5-FullIns_4 1085 11395 0.019376945 8

Table 6.1: Layout of the experimental graphs

6.6. DIMACS GRAPHS 91

Graph #K BT DS CBT SA TS ACO PSO GS-GC

anna 11 0 100 0 3 17 0 0 96
david 11 0 0 100 3 0 0 0 93
homer 13 0 100 0 0 0 0 0 100
huck 11 100 100 100 100 80 0 100 90
jean 10 100 0 100 100 80 27 96 93

miles250 8 0 0 0 17 0 0 7 100
miles500 20 0 0 0 0 0 0 0 66
miles750 31 0 0 0 0 0 0 0 37
miles1000 42 0 0 0 0 0 0 0 100
miles1500 73 0 100 0 0 0 0 0 100
queen5_5 5 100 0 100 0 97 0 100 100
queen6_6 7 100 0 100 0 3 0 3 13
queen7_7 7 100 0 100 0 0 0 0 3
queen8_8 9 0 0 0 0 0 0 0 0
queen8_12 12 100 0 100 0 0 0 0 10
queen9_9 10 0 0 0 0 0 0 0 0

Table 6.2: Results of SGB graphs

results, but the comparison is very di�cult because we don't know if a spacial

tuning for that graph family has been made. As we have mentioned, our GS-

GC haven't su�er any modi�cation for any experiment. In [15] use an ant-based

algorithm for coloring graphs. They perform well in these graphs, �nding the

best known solution in all the instances, but here we have to compare the

computational time. Our ACO implementation is a simple approach to the ant

based algorithm, because the aim of this work is the Swarm Intelligence. More

result using Genetic Algorithms appears in a Parallel Genetic approach can be

seen in [72] and [126] but the number of experiments is quite poor compare with

ours. They perform well but in a reduced group of graphs.

In [1] a cultural algorithm is implemented to solve the GCP. The results

are similar to ours but again with a small group of algorithms. In [62] using

grouping genetic algorithms, works good but fails in some graphs. We also fails

in some graphs but test di�erent families.

Result over queens graphs can be seen in [5], where a Genetic algorithm is

used again, but here introducing a new mutation operator. The results are not

optimum. Other example where the basic genetic strategy fails compared with

ours is [125]. Our algorithm has show that the queens graphs are very di�cult

for it, but in the other hand we have good result in other graphs.

92 CHAPTER 6. GRAPH COLORING RESULTS

Graph #K BT DS CBT SA TS ACO PSO GS-GC

myciel3 4 100 100 100 100 100 100 100 100
myciel4 5 100 100 100 100 100 100 100 100
myciel5 6 100 100 100 100 100 100 100 100
myciel6 7 100 100 100 100 100 100 100 100
myciel7 8 100 100 100 100 100 100 100 100

1-FullIns_3 3 100 100 100 100 78 93 100 100
1-FullIns_4 4 0 100 0 0 10 0 20 93
1-FullIns_5 5 0 100 0 0 0 0 0 90
2-FullIns_3 4 0 100 100 20 43 73 100 93
2-FullIns_4 5 0 100 0 0 3 0 0 93
2-FullIns_5 6 0 100 0 0 0 0 0 90
3-FullIns_3 5 0 100 0 3 37 0 100 87
3-FullIns_4 6 0 100 0 0 3 0 0 63
3-FullIns_5 7 0 100 0 0 0 0 0 87
4-FullIns_3 6 0 100 0 3 40 0 97 66
4-FullIns_4 7 0 100 0 0 0 0 0 66
4-FullIns_5 8 0 100 0 0 0 0 0 77
5-FullIns_3 7 0 100 0 0 20 0 57 97
5-FullIns_4 8 0 100 0 0 0 0 0 73

Table 6.3: Results of CAR graphs

6.6.1 Test

The Friedman test is a non-parametric statistical test developed by Milton Fried-

man [45] as we have said in the previous chapter. We are going to use it to

proof that teh results of our algorithm are statistically independet from the

other methods. For the SGB graphs we have the ranking values shown in table

6.4.

With this table, we obtained the Friedman value χF = 21.6. The value of

the square-chi with six degrees of freedom and a probability of accepting the

null hypothesis with 0.99 χ2 = 16.8. The Friedman values is bigger than the null

hypothesis, so we can say that the results of these algorithms are statiscically

independent. Using the Iman-Davenport improvement we have a χID = 4.5.

The new null hypothesis with 6 and 78 degrees of freedom and an accepting

probability of 0.99 is F (6, 72) = 3.29. The Iman-Davenport value is bigger than

the null hypothesis so we can say that the results of these algorithms values

are statistically di�erent. Finally, we could make a Post-hoc test, but it is no

necessary, because we wanted to show that our algorithm is independent from

the others, but it doesn't matter if the other algorithm has o not a dependence.

6.7. SEQUENTIAL CHROMATIC NUMBER DETERMINATION 93

Method BT CBT SA TS ACO PSO GS-GC

anna 5.5 5.5 3 2 5.5 5.5 1
david 5.5 1 3 5.5 5.5 5.5 2
home 4.5 4.5 4.5 4.5 4.5 4.5 1
huck 2.5 2.5 2.5 6 7 2.5 5
jean 2 2 2 6 7 4 5

miles250 5.5 5.5 2 5.5 5.5 3 1
miles500 4.5 4.5 4.5 4.5 4.5 4.5 1
miles750 4.5 4.5 4.5 4.5 4.5 4.5 1
miles1000 4.5 4.5 4.5 4.5 4.5 4.5 1
miles1500 4.5 4.5 4.5 4.5 4.5 4.5 1
queen_5_5 2.5 2.5 6.5 5 6.5 2.5 2.5
queen_6_6 1.5 1.5 6.5 4.5 6. 4.5 3
queen_7_7 1.5 1.5 5.5 5.5 5.5 5.5 3
queen_8_12 1.5 1.5 5.5 5.5 5.5 5.5 3

Rj 3.61 3.29 4.21 4.86 5.5 4.36 2.18

Table 6.4: Algorithm Rankings for Friedman Test

6.7 Sequential chromatic number determination

All the test explained in previous sections have been made knowing the chro-

matic number of the graphs. What what happened if the Chromatic number is

unknown or the algorithm can solve the graph in a proper time. In real life prob-

lem we will �nd that the chromatic number is unknown or that is not necessary

to get the best solution (a solution under a certain threshold is enough).

We have added to our algorithm an improvement that we have call Sequen-

tial approximation (SeccApp). The SeccApp consist of starting from an upper

bound to the chromatic number of a graphs, we solve the GCP with the given

number and if we succeed, we reduce the number of colors and try to solve the

problem again until we reach to a lower bound, given to the algorithm, or we

arrive to the chromatic number and the problem can go further, stopping until

a number of iterations.

We can't say that the result of the SeccApp is the chromatic number, but we

can determine an upper bound to the graph. The accuracy of this improvement

is directly related with the number of iteration to stop the algorithm after

�nding the chromatic number and the lower bound given to the algorithm. It

the number of iteration is small, we will get a result far away for the optimal

solution, but in the other hand we will have to wait a long time after �nding

the optimal.

94 CHAPTER 6. GRAPH COLORING RESULTS

Graphs100x1000 BT DS SA TS PSO ACO GS-GC

Random1 9 10 15(14) 11 11 17.1(17) 8.6(8)
Random2 10 10 15.1(15) 11 11 17(17) 9.2(9)
Random3 10 10 15(14) 14 11 17.2(17) 9.3(9)
Random4 9 11 15.1(14) 17 11 17.1(17) 9.1(9)
Random5 10 10 15(14) 11 11 17(17) 9.1(9)
Random6 11 11 14.9(14) 11 11 17(17) 9.2(9)
Random7 10 11 15(14) 11 10 17(17) 9.2(9)
Random8 10 11 15.1(14) 13 11 17.2(17) 9.1(9)
Random9 10 11 15(14) 15 10 17.3(17) 9.3(9)
Random10 11 11 15(14) 11 10 17.1(17) 9.2(9)

Table 6.5: Graphs of 100 nodes and 1000 edges. Between parentheses the min-
imum solution found.

This experiment has two problems:

1. As we don't know the chromatic number, we can't say how near we are

to the optimal. We can extract the chromatic number from small graphs

with the greedy exacts algorithms like backtracking and CBT, but with

big graphs it is impossible to use this method.

2. If the chromatic number is unknown, or the the graphs have been gener-

ated aleatory, there is any reference in the literature to compare with.

We have prepare three test using the SeccApp. Test over random graphs, DI-

MACS Leighton's graphs and real graphs from �Exam timetabling problems�

[86].

6.7.1 Random Graphs

We have generated four families of absolutely random graphs. We have add

any feature to these graphs. We have generated 10 graphs per family with 100

nodes and 1000 edges in the �rst family, 2000 edges in the second family, 3000

edges in the third family and 4000 edges in the last family. We have started

from an upper bound of 50 colors and try to reduce the number of colors to a

lower bound of 5 colors. We have use the same experimental metric as used in

previous section.

The results are plotted in tables 6.5,6.6,6.7 and 6.8

The analysis of these results come very easily from the tables. Our GS-GC

algorithm gets the best result for all the families. We can't say that the result

6.7. SEQUENTIAL CHROMATIC NUMBER DETERMINATION 95

Graphs100x2000 BT DS SA TS PSO ACO GS-GC

Random1 16 16 29.5(28) 18 18 34 15
Random2 16 17 29.5(28) 22 18 35 15
Random3 17 16 29.5(28) 19 18 34 15
Random4 18 17 29.4(28) 23 19 35 15
Random5 15 18 29.5(28) 19 19 34 15
Random6 18 16 29.4(28) 28 18 34 15
Random7 17 16 29.6(28) 17 18 34 15
Random8 16 17 29.5(28) 21 19 34 15
Random9 15 16 29.4(29) 23 19 34 15
Random10 18 17 29.6(29) 19 18 35 15

Table 6.6: Graphs of 100 nodes and 2000 edges. Between parentheses the min-
imum solution found.

Graphs100x3000 BT DS SA TS PSO ACO GS-GC

Random1 23 24 45(44) 27 28 50 23
Random2 24 24 45.5(44) 30 28 50 22
Random3 23 25 45.6(44) 34 27 50 22
Random4 26 24 45.8(44) 36 27 50 23
Random5 25 25 45.7(44) 31 27 50 23
Random6 24 24 45.4(44) 32 28 50 23
Random7 25 24 45.4(14) 32 29 50 22
Random8 25 25 45.5(44) 29 28 50 23
Random9 25 24 45.4(44) 31 27 50 23
Random10 25 25 45.5(44) 35 28 50 22

Table 6.7: Graphs of 100 nodes and 3000 edges. Between parentheses the min-
imum solution found.

Graphs100x4000 BT DS SA TS PSO ACO GS-GC

Random1 36 34 50 47 41 50 32
Random2 36 36 50 44 40 50 33
Random3 36 37 50 15 40 50 34
Random4 37 35 50 39 42 50 34
Random5 35 35 50 47 39 50 33
Random6 36 34 50 40 40 50 33
Random7 36 36 50 42 42 50 33
Random8 34 36 50 40 40 50 33
Random9 39 34 50 43 41 50 33
Random10 35 35 50 43 40 50 33

Table 6.8: Graphs of 100 nodes and 4000 edges. Between parentheses the min-
imum solution found.

96 CHAPTER 6. GRAPH COLORING RESULTS

of the GS-GC if the chromatic number but it is very near. The reason for this

experiment is to test the SeccApp improvement and not to �nd the chromatic

number of these random graphs.

The ACO algorithm is the worst as we expected, but the SA works in a

estrange manner getting very bad results. The behavior of the SA algorithm is

very estrange and would be interesting to study it, but is out of the scope of

this work.

The TS and PSO obtain very competitive results, very similar for these two

algorithms. The performance of these algorithm is reduced when the density of

the graphs grows.

Finally, the deterministic BT algorithm get the second best results in the

given number of steps (the BT will �nd the chromatic number always). This

behavior is also unexpected because beats more sophisticated algorithms.

The implementation of the CBTDS has a limitation of a chromatic number

of 8 so we haven't used it in this experiment.

The DS algorithm perform average results very fast, but it can't improve or

even equal GSGC results.

6.7.2 Leigthon graphs

Theorem 48. Two �nite graphs which have a common covering have a common

�nite covering [79].

Based in this theorem Leighton show a way to built graphs [78] where the

chromatic number is known.

After testing the SeccApp with random graphs we have make a test with

DIMACS Leighton's graphs, because although we know the chromatic number

of these graphs, we have problems solving them with out graph coloring suite so

we decide, at least, return the most approximate solution with our algorithm.

We can see them in table 6.9.

In Fleurent [41] a Evolutionary Tabu Search Approach has been used with

good results, �nding the best solution for all the 5-colorable and 15-colorable

graphs, and two of the 25 colorable graphs. The time needed to solve these

problems has been high but similar to the time used in our experiments, but

the methods presented in this paper has been tune for a particular kind of

graphs, and ours is a more general graphs, as we can see the di�erent types of

experiments. The DSATUR algorithm is the fastest method, but get very poor

results.

6.7. SEQUENTIAL CHROMATIC NUMBER DETERMINATION 97

Graph #node #Edges Density #K DS GS-GC

le450_5a 450 5714 0.056 5 12 8
le450_5b 450 5734 0.057 5 12 8
le450_5c 450 9803 0.097 5 11 9
le450_5d 450 9757 0.096 5 12 9
le450_15a 450 8168 0.081 15 19 18
le450_15b 450 8169 0.081 15 19 18
le450_15c 450 16680 0.165 15 26 20
le450_15d 450 16750 0.166 15 27 20
le450_25a 450 8260 0.082 25 26 26
le450_25b 450 8263 0.082 25 26 27
le450_25c 450 17343 0.171 25 31 30
le450_25d 450 17425 0.172 25 32 30

Table 6.9: Leighton Graphs results

Graph #K TabuCol PartCol AntCol HEA HC BT DS GSGC

sta-f-83 13 13.35 13 13.13 13 13 13 13 13
hec-s-92 17 17.22 17 17.04 17 17 19 21 18
kfu-s-93 19 20.76 19 19 19 19 19 21 20
yor-f-83 19 19.74 19 19.87 19.06 19 20 24 21
tre-s-92 20 20.58 20 20.04 20 20 23 25 23
car_f-92 27 39.92 32.48 30.04 28.5 27.96 27 34 36
car-s-91 28 39.1 30.2 29.23 29.04 29.1 28 37 37
pur-s-93 33 50.7 45.48 33.47 33.7 33.87 33 38 44

Table 6.10: Exam timetabling of Lewis [82] plus GS-GC

6.7.3 Real Graphs

Finally we have use graphs from the Exam timetabling problem of several uni-

versities of the United States. In the papers of Lewis [82, 81], we can �nd a great

comparison of some methods for graph coloring. We have add a new column

with our result. The results appear in table 6.10.

Been TabuCol a Tabu Search Based Algorithm. PartialCol a particulariza-

tion of a Tabu Search algorithm searching only feasible solutions. AntCol an Ant

Colony Optimization, similar to the ACO algorithm implemented in our suite

but more accurate than ours. HEA is an Hybrid Evolutionary Algorithm. HC a

standard Hill Climbing algorithm. BT the Backtracking algorithm but di�erent

from ours because this version of BT uses an especial ordering to improve the

results.

The results of our GS-GC algorithm is equal to the best in the sta-f-83

98 CHAPTER 6. GRAPH COLORING RESULTS

graphs, and not the best but not the worst in the rest of the examples. This

is because the amount of time used in both experiments, GS-GC iterations and

the appearing in [82]is di�erent. They used a measure that they call checks and

the experiments stops until 5e11 checks. We used a measure called steps that is

bigger than checks obviously, but we stop in only 1e5steps. Other problem is that

we haven't use the parallel advantage of our algorithm in the implementation

that is critical in large problems like this.

The DSATUR algorithm works better with these graphs, and again very

fast.

6.8 Conclusions

We have test our GS-GC algorithm with a wide range of problems. We have

compared the results obtained of our GS-GC with the other six algorithms

implemented in our Suite, and also results extracted from the bibliography.

Our algorithm is clearly better than other algorithms implemented in our Suite

in almost all the situations. When our algorithms didn't get the best results,

it is nevertheless ranked among the best. The comparison with result that

appear in the literature is more di�cult, because the metric used to carry out

the test in not always the same. Our algorithm is most cases gets at lest the

same results or even better than appear in the literature, �nding the chromatic

number reported by other researchers.

Sometimes our algorithm don't �nd the chromatic number, or get worse

results than the appearing in a publication, but this is a minority. We must take

into account that we explore a big number of di�erent classes, where published

works, usually focuses in one kind of graph.

Chapter 7

Conclusions and further work

Graph Coloring is a classical combinatorial problem, which has been studied

from many diverse points of view, and still bene�ts from fresh approaches in

the approximate solution in acceptable computational time. The work reported

in this Thesis aims to contribute an innovative approach with general good

convergence results. Graph Coloring importance from a practical point of view

lies in the de�nition of mappings from other combinatorial problems, so that

an e�cient solution of the Graph Coloring provides e�cient solutions to the

original practical problem.

The approach followed in this Thesis is nature inspired in two ways:

� Uses the swarm intelligence metaphor that has produced innovative com-

putational solutions such as the Ant Colony Optimization (ACO) and the

Particle Swarm Optimization (PSO).

� Uses the gravitational and electromagnetic interaction (loosely speaking)

metaphors to map the GCP into the swarm dynamics.

In this regard, we can state that we have succeed in proposing an e�cient

nature inspired algorithm for the solution of the GCP. The proof of the value

of algorithm follows from two separate works.

1. First, we have been able to state formally some desired convergence prop-

erties giving formal proof in the asymptotic case. Speci�cally, we have

shown that upon convergence to a stationary state the GS-GC always

reaches a solution of GCP if the number of color goals is no lower than

the graph chromatic number.

99

100 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

2. Second, we have been able to perform computational experiments over an

extesive collection of benchmark graphs, comparing with other state-of-

the-art algorithms. The performances obtained were competitive or even

improved the state of the art in several respects.

The extensive sensitivity analysis experiments have allowed to assess the general

insensitivity of the GS-GC to �ne parameter tuning, amounting to a high degree

of robustness.

7.1 Future works

Theoretical works: Future works in the theoretical domain must address

the dynamical convergence of the GS-GC: does the GS-GC always converge

to a stationary state? Are there cyclic behaviors? For such research more

sophisticated mathematical tools dealing with dynamic stochastic processes may

be needed. In any case, the GS-GC de�nition must be extended to include some

of the intuitive elements, such as the comfort, which play a role in this dynamic

convergence.

Computational veri�cation: Future works in the computational domain al-

ways ask for more extensive computational experimentation, with more accurate

implementations of the competing algorithms, �ner tuning of all algorithms.

Non-stationary: Another interesting issue is that of coping with non-stationary

environments. It will be highly interesting to study the theoretical convergence

issues in the non-stationary case, which would surely imply innovative de�ni-

tions of the processes involved. For computational evaluations, the de�nition of

appropriate benchmarking and even the adaptation of other approaches to the

non-stationary setting will be non trivial

Applications: Future works in the application domain require the identi�ca-

tion of appropriate practical problems which can be mapped into a GCP. For

instance, actually the candidate is working in social network community detec-

tion and tracking, which is a dual problem to the GCP. The GS-GC may be

very pro�cient in the adaptation to changes in the social structure by its own

nature. The GS-GC does not stop its computation when reaching an station-

ary state, and if some external condition changes the relation between nodes

7.1. FUTURE WORKS 101

and thus GS-GC agents, the GS-GC is automatically activated to restore the

equilibrium state, meaning computing the closest GCP solution.

102 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Appendix A

Graph experimental instances

and graph generators

In this appendix we present the collection of graphs that have been used in

the computational experiments for senstitivity exploration and/or comparison

among GCP solving algorithms. After a brief introduction in Section A.1, we

visit each of the kinds of graphs used: the trees in Section A.2, the DIMACS

graphs in Section A.3, random graphs in Section A.4, Mizuno's graphs in Section

A.5, planar graphs in Section A.6, KRG graphs in Section A.7, and real graphs

in Section A.8

A.1 Introduction

Testing algorithms for Graph Coloring Problem (GCP), including our Gravi-

tational Swarm for Graph Coloring (GS-GC) algorithm, requires a controlled

collection of graphs to allow for veri�cation of results and reproduction by in-

dependent testers. We have prepared eight groups of graphs to use in the

experimental works:

1. 30 Tree graphs.

2. 30 bipartite graphs.

3. 20 DIMACS graphs [68].

4. 250 Kuratowski's theorem based graphs [74].

103

104 APPENDIX A. INSTANCES AND GENERATORS

5. 250 Mizuno's method graphs [93].

6. 280 particular graphs of a new graph family of our own design that we

call KRG.

7. 40 completely random graphs of a given number of nodes and edges.

8. 8 real graphs extracted from [82] modeling a scheduling problem is some

universities in the USA.

It's is impossible to test all kinds of graphs, and even in the selected groups, there

are in�nite subfamilies with small di�erences between them, but the graphs in

the list above show many special features that are of interest in the GCP.

A.2 Trees and bipartite graphs

A.2.1 Trees

The trees are special graphs with the speci�c feature that their chromatic num-

ber is 2. A Tree is an undirected graph such that any two nodes are connected

by exactly one single path. In other words, a tree is a connected graph without

cycles.

Trees can be draw in such a way that we have a root node with two or more

o�spring. Each of these o�spring can have more o�spring until all the nodes are

downs forming a structure similar to a tree.

Coloring trees is quite easy, nevertheless trying to color them may uncover

unexpected problems for some algorithms. Therefore, they serve as a kind of

bottom benchmark for algorithm performance.

A.2.2 Bipartite

A bipartite graph is a graph whose nodes can be divided into two disjoint sets

U and V such that every edge connects a node in U to one in V; that is, U and

V are sets of independent nodes. By de�nition, bipartite graphs are 2-colorable.

And are very easy to color. But as happened with the trees, the way that the

algorithm tries to �nd the coloring can make it to fail.

A.3. DIMACS 105

A.3 DIMACS

The Center for Discrete Mathematics and Theoretical Computer Science at Rut-

gers University, DIMACS, celebrated a challenge in 1993 to probe the state of

the art of algorithms solving the GCP. Gathering material from di�erent sources,

they o�ered a lot of graphs to test and show the goodness of the algorithms.

These graphs are very important because the scienti�c community used them

to test di�erent GCP algorithms allowing easy and fair comparison of di�erent

works. This is only partially true, because even though a lot of researchers

use these graphs for testing new algorithms, the speci�c parametrization, stop-

ping conditions, and computational resources used for the experiments are often

unavailable, making really di�cult to compare one work with another. In the

DIMACS challenge, a graph �le format was introduced as a way to share graphs

between di�erent research groups. The format has three tags. The lines that

start with a letter �c� are comments, the line starting with the letter �p edge�

followed by two numbers contain the number of nodes and the number of edges

respectively. The line starting with �e� followed by two natural numbers rep-

resent an edge between two nodes identi�ed by numbers. An example graph

codi�cation follows:

c Test graph

p edge 5 6

e 1 2

e 1 3

e 2 3

e 2 4

e 2 5

e 4 5

The DIMACS graphs used in our experiments are the Mycielski graphs,

queens' graphs, miles graphs, fullins graphs and the books graphs.

A.3.1 Mycielski graphs

Among all the DIMACS graphs, the Mycielski graphs [96] have been very im-

portant in our experiments. The Mycielski graphs are constructed following

the Mycielski theorem, and are a family of small and simple graphs useful to

tune the parameters of optimization algorithms. The Mycielski theorem reads

as follows:

106 APPENDIX A. INSTANCES AND GENERATORS

Figure A.1: Mycielski graph transition from M3 to M4

Theorem 49. There are triangle-free graphs with arbitrarily high chromatic

number.

The construction of the Mycielski graph follows a mathematical formula as

follows. Let us denote the n nodes of a given graph G as v0, v1, etc. The

Mycielski graph of G contains G itself as an isomorphic sub-graph, together

with n+ 1 additional nodes: a node ui corresponding to each node vi of G, and

another node w. Each node ui is connected by an edge to w, so that these nodes

form a star-shaped sub-graph k1,n . In addition, for each edge (vi, vj) of G, the

Mycielski graph includes two edges, (ui, vj) and (vi, uj).

Thus, if G has n nodes and m edges, m(G) has 2n + 1 nodes and 3m + n

edges. In �gure A.1 we can observe the graph transition fromM3 toM4. (source

wikipedia).

A.3.2 Queens Graphs

The n × n queen graph has the squares of a n × n chessboard as its nodes

and two nodes are adjacent if and only if queens placed on the two squares

attack each other. These graphs are very dense, because as the queen can

move in all directions and all the squares that she wanted, it is very di�cult

to place n queens in a n × n chessboard. This graph family is inspired in the

classical problem of placing 8 queens in a standard 8Ö8 chessboard, see �gure

A.2. Martin Gardner states [50] without proof that the n × n queen graph is

n-colorable whenever nmod 6 is 1 or 5.

A.3. DIMACS 107

Figure A.2: 8 queens problem solution

A.3.3 Miles graphs

Miles graphs are similar to geometric graphs in that nodes are placed in space

with two nodes connected if they are close enough. These graphs, however, are

not random. The nodes represent a set of United States cities and the distance

between them is given by by road mileage from 1947. These graphs are also due

to Knuth. There are di�erent graphs according to the number of cities used for

its construction. In the �gure A.3 we can see a map of the USA where some

cities of di�erent states are linked by a wire.

A.3.4 Fullins graphs

Full Insertion aka Fullins graphs are a generalization of Mycielski graphs with

inserted nodes to increase graph size but not density. The result is a graph more

complex and di�cult to color. The problem of Mycielski graphs is that they are

very easy to solve by deterministic algorithms and don't o�er a handicap. This

generalization allow to use the Mycielski theorem to built more di�cult graphs.

108 APPENDIX A. INSTANCES AND GENERATORS

Figure A.3: United States Cites Graph

A.3.5 Books graphs

These graphs are extracted from books. The construction is as follows: Given

a work of literature, a graph is created where each node represents a character.

Two nodes are connected by an edge if the corresponding characters encounter

each other in the book. Donald E. Knuth from the Stanford University created

the graphs for �ve classic works:

1. Leon Tolstoy's Anna Karenina called anna.col with 138 node, 493 edges

and 11 colors.

2. Charles Dicken's David Copper�eld called david.col with 87 node, 406

edges and 11 colors.

3. Homer's Iliad called homer.col with 561 node, 1629 edges and 13 colors.

4. Mark Twain's Huckleberry Finn called huck.col with 74 node, 301 edges

and 11 colors.

5. Victor Hugo's Les Miserables called jean.col with 80 node, 254 edges and

10 colors.

A.4. RANDOM GRAPHS 109

Figure A.4: Books where the Books Graphs come from

A.3.6 Leighton Graphs

This family of graphs is based on Leighton's graph covering theorem [79] that

says:

Theorem 50. Two �nite graphs which have a common covering have a common

�nite covering.

This graph family has been widely studied and represent a particular group

of graphs called covering graphs. Let G = (V,E) and C = (V 2, E2) be two

graphs, and let f : V 2 → V be a subjection. Then f is a covering map from

C to G if for each v ∈ V 2, the restriction of f to the neighborhood of v is a

bijection onto the neighborhood of f(v) ∈ V in G. In other words, f maps edges

incident to v one-to-one onto edges incident to f(v). If there exists a covering

map from C to G, then C is a covering graph (or a lift) of G.

A.4 Random Graphs

We have implemented a graph generator that given a number of nodes V and a

range of edges E1 and E2, the application can generated a graph G = {V,E}.
The test using this kind of graphs is useful to challenge di�erent algorithms

starting without any information. The chromatic number is unknown, so start-

ing from an upper-bound, the algorithms must �nd the chromatic number, or

try to get near as fast as possible.

The random graphs are used in advanced test, when the algorithms have been

previously tuned. Not all the methods allow a sequential decreasing search, but

is essential in graphs of unknown chromatic number if we want the search of the

chromatic number to be an automatic task. The other way implies a manual

110 APPENDIX A. INSTANCES AND GENERATORS

search changing the number of color after each success try. All implementations

in our Graph Coloring Suite came with this feature.

A.5 Mizuno's Graphs

We have implemented the graph generation method developed by Mizuno in

[94]. Mizuno's Graphs are a family of 3-colorable graphs. Mizuno claims that

the graphs generated by his method are very hard to color. We have con�rmed

empirically that it's true.

The constructions of these graphs is based on 12 di�erent graphs called

MUGs that are 4 colorable. We can see these MUGs in �gure A.5. The method

takes two of these MUGS and join them according to a rule to form a new graph

that is exactly 3-colorable. The resulting graph can join with another MUG,

following the same rule, to create bigger graphs. This can be repeated until the

user wanted increasing the size of the graphs. All these graphs have the same

complexity but obviously, bigger graphs are even more di�cult to solve than

small graphs.

The Mizuno's graphs appear in the DIMACS challenge but we have built our

own generator because the chromatic number is known so we can make extensive

and exhaustive test on di�cult graphs. The number of Mizuno's graphs that

appears in DIMACS is very short.

A.6 Planar Graphs

We have prepared an especial family of Graphs: Planar Graphs. A planar graph

is a graph that can be embedded in the plane: all the edges can be draw in the

plane without any crossing. Planar graphs are 4-colorable according to the four

color theorem. This theorem states that, given any separation of a plane into

contiguous regions, producing a �gure called a map, no more than four colors

are required to color the regions of the map so that no two adjacent regions have

the same color. In other words the chromatic number of planar graphs is 4. We

have implemented a graph generation application the following Kuratowski's

theorem:

Theorem 51. A �nite graph is planar if and only if it does not contain a

sub-graph that is a subdivision of k5 or k3,3.

A.6. PLANAR GRAPHS 111

Figure A.5: Mizuno's MUGs for 3-colorable graphs generation [93]

112 APPENDIX A. INSTANCES AND GENERATORS

Where k5 is the complete graph on �ve nodes, and k3,3 is the complete

bipartite graph of six nodes, three of which connect to each of the other three.

Our implementation, like for random graphs, asks for the number of nodes

V and the number of edges E. The maximum number of edges comes from the

formula M = (V ∗ 3) − 6. If E > M then it is impossible to generate a planar

graph.

A.7 KRG graphs

The KRG graphs are a special family of graphs discovered in this thesis whose

chromatic number is determined by the graph construction process. To build

these graphs, we need to specify three parameters: the nodes V , the edges E and

the desired chromatic number C. Taking into account the Kuratowski theorem,

there are not any k5 or k3,3 sub-graphs in a planar graph. Choosing C nodes

and connecting all the nodes forming a Kc sub-graph of n edges n = C∗(C−1)
2 .

The resulting increased graph G = {V,E} is C-colorable.

Proposition 52. Given a planar graph, adding n edges between nodes such that

we form a complete sub-graph Kc, the chromatic number of the increased graph

is c the number of nodes of the complete sub-graph.

The Graph Gk = {V, (E − n)} is planar using the Kuratowski theorem. The

graph G = {V,E} has a maximum clique of C, been a clique more or less a

complete sub-graph where all the nodes have and edge between them. Using

the Brèlaz [11] method for graph coloring we can say that the chromatic lower-

bound is C. Using the Bron-Kerbosch [12] method to extract a clique, we can

sure that there is any clique bigger than C. So the chromatic number is C.

In the �gure A.7 we can see a screenshot of the implemented aplication,

embeded in the graph coloring suite, that generates the aleatory graphs with a

given number of nodes and a range of edges. Planar graphs based on kuratowski

theorem and our new graphs KRG. And also the 3-colorable graphs of Mizuno.

A.8 Real Graphs

We have used synthetic graphs to prove that our algorithm can solve the GCP.

These graphs follow a pattern which the algorithms can use to �nd the solution.

Even randomly generated graphs can have a pattern, induced by the genera-

tion method implementation. However, sometimes modeling a real life problem

A.8. REAL GRAPHS 113

Figure A.6: Aleatory graphs, Kuratowski's planar graphs, Mizuno's 3-colorable
graphs and KRG new developed graph type generator.

produces graphs without any special feature and arbitrary structures that can

confuse even the most accurate algorithms.

For that reason we have included in this benchmarking graph collection

some real life graphs arising from the modeling of a scheduling problem in some

universities in the USA. Noteworthy, the exact chromatic number is unknown

so that for comparison we only have the result published by other researchers.

The problem is to schedule the examinations using the existing resources, in

such a way that no two exams can be held in the same place in the same day.

The full explanation of these graphs can be found in [19].

114 APPENDIX A. INSTANCES AND GENERATORS

Appendix B

Graph Coloring Suite

We have implemented all the GCP solving methods in a single program. We

call it a Graph coloring Suite, because we have in a unique enviroment all the

algorihtms. We can see a snapshot of the the program's user interface in �gure

B.1.

The user interface allows to select:

� The input graph �le (which must be coded in DIMACS format),

� The output directory for the results.

� The hypothesis on the chromatic number.

� The upper bound on the chromatic number, if you want to perform a

sequential search decreasing the hypothetical chromatic number of colors

until reaching the lowest unsolved hypothesis.

� Besides there are four additional parameter needed only for the GS-GC:

the Goal Radius, the world size and the Confort.

� The number of iterations that we are going to let to program before stoping

it without �nding a solution. The program stops when a solution is found

or the maximum number of iterations is achieved.

� The number Repetitions of the algorithm that we want to execute. This

value has no meaning in the BackTracking and DSATUR algorithms, as

the are deterministic.

115

116 APPENDIX B. GRAPH COLORING SUITE

Figure B.1: Graph Coloring Suite

� The algorithm to be used for the solution (via separate buttons). Our

GS-GC correspond to the GSI button, that comes from old versions of the

suite

The program returns a �le that contains information about the result of the

applied algorithm. The �rst line is the algorithm used. Then for each repetition

of the algorithm, the number of iterations need to �nd a solution and the number

of repetition. If the algorithm didn't managed to �nd a solution then the number

of iteration is equal to the maximum number of iteratiosn. After that, the

solution appears if it is found, showing for each vertex the assigned color by the

algorithm. The colors are represented by numbers starting from zero.

Finally, there is a summary report of the experiment. The number of repe-

titions. The numer of success experiment and the number of failures. Then the

average number of iterations for all the experiments, success and failures. And

the last two lines are for the total time of the experiments in seconds and the

name of the �le with the graph tested. The �gure B.2 shows a snapshot of a

result �le.

117

Figure B.2: Snapshot of a result �le

118 APPENDIX B. GRAPH COLORING SUITE

Bibliography

[1] Reza Abbasian, Malek Mouhoub, and Amin Jula. Solving graph coloring

problems using cultural algorithms. 2011.

[2] G. Antonelli, F. Arrichiello, and S. Chiaverini. Flocking for multi-robot

systems via the null-space-based behavioral control. Swarm Intelligence,

4:37�56, 2010.

[3] Katerina Asdre, Kyriaki Ioannidou, and Stavros D. Nikolopoulos. The

harmonious coloring problem is np-complete for interval and permutation

graphs. Discrete Applied Mathematics, 155(17):2377 � 2382, 2007.

[4] P. Balaprakash, M. Birattari, T. Statzle, Z. Yuan, and M. Dorigo.

Estimation-based ant colony optimization and local search for the proba-

bilistic traveling salesman problem. Swarm Intelligence, 3:223�242, 2009.

[5] Debnath Bhattacharyya Biman Ray, Anindya J Pal and Tai hoon Kim. An

e�cient ga with multipoint guided mutation for graph coloring problems.

International Journal of Signal Processing, Image Processing and Pattern

Recognition, 3(2), june 2010.

[6] I. Blochliger and N. Zu�erey. A graph coloring heuristic using partial

solutions and a reactive tabu scheme. Computers & Operations Research,

35(3):960 � 975, 2008.

[7] J. A. Bondy. Graph Theory With Applications. Elsevier Science Ltd, 1976.

[8] Flavia Bonomo, Sara Mattia, and Gianpaolo Oriolo. Bounded coloring

of co-comparability graphs and the pickup and delivery tour combination

problem. Theoretical Computer Science, 412(45):6261 � 6268, 2011.

[9] V. Borkar and D. Das. A novel aco algorithm for optimization via rein-

forcement and initial bias. Swarm Intelligence, 3:3�34, 2009.

119

120 BIBLIOGRAPHY

[10] M. Bouchard, M. Cangalovic, and A. Hertz. About equivalent interval

colorings of weighted graphs. Discrete Applied Mathematics, 157(17):3615

� 3624, 2009.

[11] D. Brelaz. New methods to color the vertices of a graph. Commun. ACM,

22:251�256, April 1979.

[12] C. Bron and J. Kerbosch. Algorithm 457: �nding all cliques of an undi-

rected graph. Commun. ACM, 16:575�577, September 1973.

[13] J. Randall Brown. Chromatic scheduling and the chromatic number prob-

lem. Management Science, 19(4-Part-1):456�463, 1972.

[14] Moritz Buck and Chrystopher L. Nehaniv. Communication and complex-

ity in a grn-based multicellular system for graph colouring. Biosystems,

94(1-2):28 � 33, 2008.

[15] T. N. Bui, T. H. Nguyen, C. M. Patel, and K. T. Phan. An ant-based

algorithm for coloring graphs. Discrete Applied Mathematics, 156(2):190

� 200, 2008.

[16] V. Campos, C. Linhares Sales, K. Maia, N. Martins, and R. Sampaio.

Restricted coloring problems on graphs with few. Electronic Notes in

Discrete Mathematics, 37(0):57 � 62, 2011.

[17] M. Caramia and P. Dell'Olmo. A lower bound on the chromatic number

of mycielski graphs. Discrete Mathematics, 235(1-3):79�86, 2001.

[18] M. Caramia and P. Dell'Olmo. Coloring graphs by iterated local search

traversing feasible and infeasible solutions. Discrete Applied Mathematics,

156(2):201 � 217, 2008.

[19] M. Carter, G. Laporte, and S.Y. Lee. Examination timetabling: algo-

rithmic strategies and applications. Journal of the Operational Research

Society, 47:373�383, 1996.

[20] H. Chang and X. Zhu. Colouring games on outerplanar graphs and trees.

Discrete Mathematics, 309(10):3185 � 3196, 2009.

[21] S. Chu, J. F. Roddick, and J. Pan. Ant colony system with communication

strategies. Information Sciences, 167(1-4):63 � 76, 2004.

BIBLIOGRAPHY 121

[22] V. Chvatal. Coloring the queen graphs, 2004. Web repository (last visited

July 2005).

[23] Giuseppe Confessore, Paolo Dell'Olmo, and Stefano Giordani. An ap-

proximation result for the interval coloring problem on claw-free chordal

graphs. Discrete Applied Mathematics, 120(1-3):73�90, 2002.

[24] D. G. Corneil and B. Graham. An algorithm for determining the chromatic

number of a graph. SIAM J. Comput., 2(4):311�318, 1973.

[25] D. Costa and A. Hertz. Ants can colour graphs. The Journal of the

Operational Research Society, 48(3):295�305, March 1997.

[26] M. C. Costa, D. de Werra, C. Picouleau, and B. Ries. Graph coloring

with cardinality constraints on the neighborhoods. Discrete Optimization,

6(4):362 � 369, 2009.

[27] M. Crochemore and R. Verin. On compact directed acyclic word graphs.

In Arto Salomaa Jan Mycielski, Grzegorz Rozenberg, editor, A Selection

of Essays in honor of Andrzej Ehrenfeucht, volume 1261 of Lecture Notes

in Computer Science, pages 192�211. Springer Verlag, 1997.

[28] G. Cui, L. Qin, S. Liu, Y. Wang, X. Zhang, and X. Cao. Modi�ed pso

algorithm for solving planar graph coloring problem. Progress in Natural

Science, 18(3):353 � 357, 2008.

[29] D. de Werra, M. Demange, B. Esco�er, J. Monnot, and V.Th. Paschos.

Weighted coloring on planar, bipartite and split graphs: Complexity and

approximation. Discrete Applied Mathematics, 157(4):819 � 832, 2009.

[30] Marc Demange, Tinaz Ekim, and Dominique de Werra. A tutorial on the

use of graph coloring for some problems in robotics. (1).

[31] Marc Demange, Tinaz Ekim, and Dominique de Werra. (p,k)-coloring

problems in line graphs. Theoretical Computer Science, 349(3):462 � 474,

2005.

[32] Dániel and Marx. Parameterized coloring problems on chordal graphs.

Theoretical Computer Science, 351(3):407 � 424, 2006.

[33] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by

a colony of cooperating agents. IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS-PART B, 26(1):29�41, 1996.

122 BIBLIOGRAPHY

[34] K. A. Dowsland and J. M. Thompson. An improved ant colony optimi-

sation heuristic for graph colouring. Discrete Appl. Math., 156:313�324,

February 2008.

[35] W. Du and B. Li. Multi-strategy ensemble particle swarm optimization for

dynamic optimization. Information Sciences, 178(15):3096 � 3109, 2008.

[36] I. Dukanovic and F. Rendl. A semide�nite programming-based heuristic

for graph coloring. Discrete Applied Mathematics, 156(2):180 � 189, 2008.

[37] R. D. Dutton and R. C. Brigham. A new graph colouring algorithm. The

Computer Journal, 24(1):85�86, 1981.

[38] M. El-Abd and M. Kamel. A cooperative particle swarm optimizer with

migration of heterogeneous probabilistic models. Swarm Intelligence,

4:57�89, 2010.

[39] J. Fernández and E. García. The pso family: deduction, stochastic analysis

and comparison. Swarm Intelligence, 3:245�273, 2009.

[40] R.A. Fisher. Frequency distribution of the values of the correlation co-

e�cient in samples from an inde�nitely large population. Biometrika,

10:507�521, 1915.

[41] Charles Fleurent and Jacques Ferland. Genetic and hybrid algorithms for

graph coloring. Annals of Operations Research, 63:437�461, 1996.

[42] G. Folino, A. Forestiero, and G. Spezzano. An adaptive �ocking al-

gorithm for performing approximate clustering. Information Sciences,

179(18):3059 � 3078, 2009.

[43] N. Franks, J. Hooper, M. Gumn, T. Bridger, J. Marshall, and A. Dorn-

haus. Moving targets: collective decisions and �exible choices in house-

hunting ants. Swarm Intelligence, 1:81�94, 2007.

[44] M. Friedman. The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the American Statistical

Association, 32:674�701, 1937.

[45] Milton Friedman. A comparison of alternative tests of signi�cance for the

problem of m rankings. Annals of Mathematical Statistics, 11(1):86�92,

March 1940.

BIBLIOGRAPHY 123

[46] H. Furmanczyk, A. Kosowski, B. Ries, and P. Zylinski. Mixed graph edge

coloring. Discrete Mathematics, 309(12):4027 � 4036, 2009.

[47] P. Galinier, A. Hertz, and N. Zu�erey. An adaptive memory algorithm for

the k-coloring problem. Discrete Applied Mathematics, 156(2):267 � 279,

2008.

[48] Philippe Galinier and Alain Hertz. A survey of local search methods for

graph coloring. Comput. Oper. Res., 33(9):2547�2562, 2006.

[49] Michel Gamache, Alain Hertz, and Jérôme Olivier Ouellet. A graph col-

oring model for a feasibility problem in monthly crew scheduling with

preferential bidding. Computers & Operations Research, 34(8):2384

� 2395, 2007.

[50] Martin Gardner. The Unexpected Hanging and Other Mathematical Di-

versions. The University of Chicago Press, Chicago Illinois, 1969. ISBN

0-226-28256-2.

[51] F. Ge, Z. Wei, Y. Tian, and Z. Huang. Chaotic ant swarm for graph

coloring. In Intelligent Computing and Intelligent Systems (ICIS), 2010

IEEE International Conference on, volume 1, pages 512 �516, 2010.

[52] D. Gomez and J. Montero. A coloring fuzzy graph approach for image

classi�cation. Information Sciences, 176(24):3645 � 3657, 2006.

[53] M. Graña, B. Cases, C. Hernandez, and A. D'Anjou. Further results on

swarms solving graph coloring. In D. Taniar et al., editor, ICCSA 2010

Part III, number 6018 in LNCS, pages 541�551. Springer, 2010.

[54] D.J. Guan and Zhu Xuding. A coloring problem for weighted graphs.

Information Processing Letters, 61(2):77 � 81, 1997.

[55] W. Gutjahr. Mathematical runtime analysis of aco algorithms: survey on

an emerging issue. Swarm Intelligence, 1:59�79, 2007.

[56] J. Hansen, M. Kubale, U. Kuszner, and A. Nadolski. Distributed largest-

�rst algorithm for graph coloring. In Marco Danelutto, Marco Vanneschi,

and Domenico Laforenza, editors, Euro-Par 2004 Parallel Processing, vol-

ume 3149 of Lecture Notes in Computer Science, pages 804�811. Springer

Berlin , Heidelberg, 2004.

124 BIBLIOGRAPHY

[57] H. Hernández and C. Blum. Ant colony optimization for multicasting in

static wireless ad-hoc networks. Swarm Intelligence, 3:125�148, 2009.

[58] F. Herrmann and A. Hertz. Finding the chromatic number by means of

critical graphs. Electronic Notes in Discrete Mathematics, 5(0):174 � 176,

2000.

[59] A. Hertz. A new graph coloring algorithm. Operations Research Letters,

10(7):411 � 415, 1991.

[60] A. Hertz, M. Plumettaz, and N. Zu�erey. Variable space search for graph

coloring. Discrete Applied Mathematics, 156(13):2551 � 2560, 2008.

[61] L. Hsu, S. Horng, and P. Fan. Mtpso algorithm for solving planar graph

coloring problem. Expert Syst. Appl., 38:5525�5531, May 2011.

[62] Limin Hu. Distributed code assignments for cdma packet radio networks.

Networking, IEEE/ACM Transactions on, 1(6):668 �677, dec 1993.

[63] Shin ichi Nakayama and Shigeru Masuyama. A parallel algorithm for

solving the coloring problem on trapezoid graphs. Information Processing

Letters, 62(6):323 � 327, 1997.

[64] Davenport J.M Iman, R.L. Approximations of the critical region of the

friedman statistic. Communications in Statistics, pages 575�595, 1980.

[65] M. Jiang, Y.P. Luo, and S.Y. Yang. Stochastic convergence analysis and

parameter selection of the standard particle swarm optimization algo-

rithm. Information Processing Letters, 102(1):8 � 16, 2007.

[66] A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari. Character-

istics of ant-inspired tra�c �ow. Swarm Intelligence, 2:25�41, 2008.

[67] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-

tion by simulated annealing: An experimental evaluation; part II, graph

coloring and number partitioning. Operations Research, 39(3):378�406,

1991.

[68] D. S. Johnson and M. A. Trick. Cliques, Coloring, and Satis�ability:

Second DIMACS Implementation Challenge, volume 26. American Math-

ematical Society, 1993.

BIBLIOGRAPHY 125

[69] D.S. Johnson and M.A. Trick, editors. Proceedings of the 2nd DIMACS

Implementation Challenge, volume 26. American Mathematical Society,

1996. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science.

[70] R. J. Kang and T. Muller. Frugal, acyclic and star colourings of graphs.

Discrete Applied Mathematics, In Press, Corrected Proof:�, 2010.

[71] W. Klotz. Clique covers and coloring problems of graphs. Journal of

Combinatorial Theory, Series B, 46(3):338 � 345, 1989.

[72] Zbigniew Kokosiski and Krzysztof Kwarciany. On sum coloring of graphs

with parallel genetic algorithms. pages 211�219, 2007.

[73] O. Korb, T. Stutzle, and T. Exner. An ant colony optimization approach

to �exible protein-ligand docking. Swarm Intelligence, 1:115�134, 2007.

[74] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.

Math., 15:271�283, 1930.

[75] K. Kuratowski. A half century of polish mathematics: Remembrances and

re�ections. Oxford, Pergamon Press, 1980.

[76] P. C. B. Lam, W. Lin, G. Gu, and Z. Song. Circular chromatic number

and a generalization of the construction of mycielski. J. Comb. Theory

Ser. B, 89(2):195�205, 2003.

[77] M. Larsen, J. Propp, and D. Ullman. The fractional chromatic number of

mycielski's graphs. J. Graph Theory, 19:411�416, 1995.

[78] F. T. Leighton. A graph coloring algorithm for large scheduling problems.

Journal of Research of the National Bureau of Standards, 84(6):489�506,

1979.

[79] Frank Thomson Leighton. Finite common coverings of graphs. Journal of

Combinatorial Theory, Series B, 33(3):231�238, December 1982.

[80] G. Lewandowski and A. Condon. Experiments with parallel graph coloring

heuristics and applicationsof graph coloring. pages 309�334, 1994.

[81] R. Lewis and J. Thompson. On the application of graph colouring tech-

niques in round-robin sports scheduling. Computers & Operations

Research, 38(1):190 � 204, 2011.

126 BIBLIOGRAPHY

[82] R. Lewis, J. Thompson, C. Mumford, and J. Gillard. A wide-ranging com-

putational comparison of high-performance graph colouring algorithms.

Computers & Operations Research, 39(9):1933 � 1950, 2012.

[83] X. Li and J. Wang. A steganographic method based upon jpeg and particle

swarm optimization algorithm. Information Sciences, 177(15):3099 � 3109,

2007.

[84] Z. Lu and J. Hao. A memetic algorithm for graph coloring. European

Journal of Operational Research, 203(1):241 � 250, 2010.

[85] B. Luzar, R. Skrekovski, and M. Tancer. Injective colorings of planar

graphs with few colors. Discrete Mathematics, 309(18):5636 � 5649, 2009.

[86] S. Y. Lee M. W. Carter, G. Laporte. Examination timetabling : Algorith-

mic strategies and applications. The Journal of the Operational Research

Society, 47(3):373�383, 1996.

[87] B. B. Mabrouk, H. Hasni, and Z. Mahjoub. On a parallel genetic-tabu

search based algorithm for solving the graph colouring problem. European

Journal of Operational Research, 197(3):1192 � 1201, 2009.

[88] E. Maistrelli and D.B. Penman. Some colouring problems for paley graphs.

Discrete Mathematics, 306(1):99 � 106, 2006.

[89] Timir Maitra, Anindya J. Pal, Minkyu Choi, and Taihoon Kim. Hy-

bridization of ga and ann to solve graph coloring. In Tai-hoon Kim, Adrian

Stoica, and Ruay-Shiung Chang, editors, Security-Enriched Urban Com-

puting and Smart Grid, volume 78 of Communications in Computer and

Information Science, pages 517�523. Springer Berlin Heidelberg, 2010.

[90] A. Marino and R. I. Damper. Breaking the symmetry of the graph colour-

ing problem with genetic algorithms. In Genetic and Evolutionary Compu-

tation Conference (GECCO-2000), Late Breaking Papers, pages 240�245,

2000.

[91] A. Mehrotra and M. Trick. A column generation approach for graph

coloring. INFORMS Journal On Computing, 8(4):344�354, 1996.

[92] J. Miskuf, R. Skrekovski, and M. Tancer. Backbone colorings and gener-

alized mycielski's graphs, 2008.

BIBLIOGRAPHY 127

[93] K. Mizuno and S. Nishihara. Constructive generation of very hard 3-

colorability instances. Discrete Appl. Math., 156(2):218�229, 2008.

[94] K. Mizuno and S. Nishihara. Toward ordered generation of exceptionally

hard instances for graph 3-colorability. In Discrete Applied Mathematics

archive, volume 156, pages 1�8, January 2008.

[95] Isabel Méndez-Díaz and Paula Zabala. A branch-and-cut algorithm for

graph coloring. Discrete Applied Mathematics, 154(5):826 � 847, 2006.

[96] J. Mycielski. Sur le coloureage des graphes. Colloquium Mathematicum,

3:161�162, 1955.

[97] P. B. Nemenyi. Distribution-free multiple comparisons. PhD thesis,

Princeton University, 1963.

[98] Stavros D. Nikolopoulos. Coloring permutation graphs in parallel. Discrete

Applied Mathematics, 120(1-3):165 � 195, 2002.

[99] A. Nolte and R. Schrader. Simulated annealing and graph colouring.

Comb. Probab. Comput., 10:29�40, January 2001.

[100] S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot swarm.

Swarm Intelligence, 2:1�23, 2008.

[101] Rei Odaira, Takuya Nakaike, Tatsushi Inagaki, Hideaki Komatsu, and

Toshio Nakatani. Coloring-based coalescing for graph coloring register

allocation. In Proceedings of the 8th annual IEEE/ACM international

symposium on Code generation and optimization, CGO '10, pages 160�

169, New York, NY, USA, 2010. ACM.

[102] G. Palubeckis. On the recursive largest �rst algorithm for graph colouring.

Int. J. Comput. Math., 85:191�200, February 2008.

[103] P.M. Pardalos and A. Migdalas. A note on the complexity of longest path

problems related to graph coloring. Applied Mathematics Letters, 17(1):13

� 15, 2004.

[104] Hyoung-Keun Park, Sun-Youb Kim, Yu-Chan Ra, and Seung-Woo Lee.

A study on the new bsc algorithm and design for network security. In

Proceedings of the 2009 International Conference on New Trends in In-

formation and Service Science, pages 37�41, Washington, DC, USA, 2009.

IEEE Computer Society.

128 BIBLIOGRAPHY

[105] Karl Pearson. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can

be reasonably supposed to have arisen from random sampling. Philosoph-

ical Magazine, 50(5):157.175, 1900.

[106] G. Peterson, C. Mayer, and T. Kubler. Ant clustering with locally

weighted ant perception and diversi�ed memory. Swarm Intelligence, 2:43�

68, 2008.

[107] P.A. Petrosyan. Interval edge-colorings of complete graphs and n-

dimensional cubes. Discrete Mathematics, 310(10-11):1580 � 1587, 2010.

[108] P.A. Petrosyan, H.Z. Arakelyan, and V.M. Baghdasaryan. A generaliza-

tion of interval edge-colorings of graphs. Discrete Applied Mathematics,

158(16):1827 � 1837, 2010.

[109] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization.

Swarm Intelligence, 1:33�57, 2007.

[110] D. C. Porumbel, J. Hao, and P. Kuntz. An evolutionary approach with

diversity guarantee and well-informed grouping recombination for graph

coloring. Computers & Operations Research, 37(10):1822 � 1832, 2010.

[111] D. C. Porumbel, J. Hao, and P. Kuntz. A search space cartography

for guiding graph coloring heuristics. Computers & Operations Research,

37(4):769 � 778, 2010.

[112] Rong Qu, Edmund K. Burke, and Barry McCollum. Adaptive automated

construction of hybrid heuristics for exam timetabling and graph colouring

problems. European Journal of Operational Research, 198(2):392 � 404,

2009.

[113] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi. Gsa: A gravitational

search algorithm. Information Sciences, 179(13):2232 � 2248, 2009.

[114] André Raspaud and Eric Sopena. Good and semi-strong colorings of ori-

ented planar graphs. Information Processing Letters, 51(4):171 � 174,

1994.

[115] I. Rebollo and M. Graña. Further results of gravitational swarm intelli-

gence for graph coloring. In Nature and Biologically Inspired Computing,

2011.

BIBLIOGRAPHY 129

[116] I. Rebollo and M. Graña. Gravitational Swarm Approach for Graph Color-

ing, volume 387 of Studies in Computational Intelligence. Springer-Verlag,

2011.

[117] Israel Rebollo, Manuel Gra?a, and Carmen Hernandez. Aplicacion de

algoritmos estocasticos de optimizacion al problema de la disposicion de

objetos no-convexos. Revista Investigacion Operacional, 22(2):184�191,

2001.

[118] Z. Ren, J. Wang, and H. Zhang. A new particle swarm optimization al-

gorithm and its convergence analysis. In Genetic and Evolutionary Com-

puting, 2008. WGEC '08. Second International Conference on, pages 319

�323, 25-26 2008.

[119] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. In Computer Graphics, pages 25�34, 1987.

[120] Rhyd and Lewis. A general-purpose hill-climbing method for order inde-

pendent minimum grouping problems: A case study in graph colouring

and bin packing. Computers & Operations Research, 36(7):2295 �

2310, 2009.

[121] B. Ries. Complexity of two coloring problems in cubic planar bipartite

mixed graphs. Discrete Applied Mathematics, 158(5):592 � 596, 2010.

[122] A. Rizzoli, R. Montemanni, E. Lucibello, and L. Gambardella. Ant colony

optimization for real-world vehicle routing problems. Swarm Intelligence,

1:135�151, 2007.

[123] S. Shah, R. Kothari, and S. Chandra. Trail formation in ants. a generalized

polya urn process. Swarm Intelligence, 4:145�171, 2010.

[124] Claude E. Shannon. A mathematical theory of communication. The Bell

System Technical Journal, 27:379�423, July, October 1948.

[125] Justine W. Shen. Solving the graph coloring problem using genetic pro-

gramming. In John R. Koza, editor, Genetic Algorithms and Genetic Pro-

gramming at Stanford 2003, pages 187�196, Stanford, California, 94305-

3079 USA, 4 December 2003. Stanford Bookstore.

130 BIBLIOGRAPHY

[126] S. N. Sivanandam, S. Sumathi, and T. Hamsapriya. A hybrid parallel

genetic algorithm approach for graph coloring. Int. J. Know.-Based Intell.

Eng. Syst., 9:249�259, August 2005.

[127] George W. Snedecor. The method of expected numbers for tables of mul-

tiple classi�cation with disproportionate subclass numbers. Journal of the

American Statistical Association, 29(188):389�393, 1934.

[128] Jeremy P. Spinrad and Gopalakrishnan Vijayan. Worst case analysis of

a graph coloring algorithm. Discrete Applied Mathematics, 12(1):89 � 92,

1985.

[129] Tai-hoon Kim Debnath Bhattacharyya T. Maitra, A. J. Pal. Hybridization

of genetic algorithm with bitstream neurons for graph coloring. Interna-

tional Journal of u- and e- Service, Science and Technology, 3(3):37�53,

september 2010.

[130] P. M. Talaván and J. Yáez. The graph coloring problem: A neuronal

network approach. European Journal of Operational Research, 191(1):100

� 111, 2008.

[131] O. Titiloye and A. Crispin. Quantum annealing of the graph coloring

problem. Discrete Optimization, In Press, Corrected Proof:�, 2011.

[132] J. W. Tukey. Comparing individual means in the analysis of variance.

Biometrics, 5:99�114, 1949.

[133] A. Turgut, H. elikkanat, and E. Fahin. Self-organized �ocking in mobile

robot swarms. Swarm Intelligence, 2:97�120, 2008.

[134] J. S. Turner. Almost all k-colorable graphs are easy to color. Journal of

Algorithms, 9(1):63 � 82, 1988.

[135] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.

Analiz, 3:23�30, 1968.

[136] Tjark Vredeveld and Jan Karel Lenstra. On local search for the generalized

graph coloring problem. Operations Research Letters, 31(1):28 � 34, 2003.

[137] Herbert S. Wilf. Backtrack: An o(1) expected time algorithm for the

graph coloring problem. Information Processing Letters, 18(3):119 � 121,

1984.

BIBLIOGRAPHY 131

[138] David R. Wood. An algorithm for �nding a maximum clique in a graph.

Operations Research Letters, 21(5):211 � 217, 1997.

[139] Jianshe Wu, Licheng Jiao, Rui Li, and Weisheng Chen. Clustering dynam-

ics of nonlinear oscillator network: Application to graph coloring problem.

Physica D: Nonlinear Phenomena, 240(24):1972 � 1978, 2011.

[140] X. Xie and J. Liu. Graph coloring by multiagent fusion search. Journal

of Combinatorial Optimization, 18:99�123, 2009.

[141] K. Yadav, S. Varagani, K. Kothapalli, and V.Ch. Venkaiah. Acyclic vertex

coloring of graphs of maximum degree 5. Discrete Mathematics, 311(5):342

� 348, 2011.

[142] Jiaqi Yu and Songnian Yu. A novel parallel genetic algorithm for the

graph coloring problem in vlsi channel routing. International Conference

on Natural Computation, 4:101�105, 2007.

[143] Ming-Shing Yu and Cheng-Hsing Yang. A simple optimal parallel algo-

rithm for the minimum coloring problem on interval graphs. Information

Processing Letters, 48(1):47 � 51, 1993.

[144] Zhao Zhang and Hao Li. Algorithms for long paths in graphs. Theoretical

Computer Science, 377(1-3):25 � 34, 2007.

[145] A. A. Zykov. On some properties of linear complexes. Mat. Sb. (N.S.),

24(2):163�188, 1949.

132 BIBLIOGRAPHY

	Introduction
	Motivation
	Objectives
	Fundamental objectives
	Operational objectives

	Contributions of the Thesis
	Publications

	Structure of the dissertation
	Selected notation

	State of the art
	Graph Coloring Problem
	Properties

	Swarm Intelligence
	Flocking behaviors
	Ant Colonies
	Particle Swarms
	Gravitational swarm

	Graph Coloring Algorithms
	Classical algorithms
	Approximate algorithms
	Graph Families

	Swarm Intelligence for Graph Coloring

	GCP Applications

	GCP Algorithms
	Graph Coloring Problem methods
	Backtracking (BT)
	Special BT initialization

	DSATUR
	Tabu Search (TS)
	Simulated Annealing (SA)
	Ant Colony Optimization (ACO)
	Particle Swarm Optimization (PSO)
	Gravitational Swarm for Graph Coloring (GS-GC)

	Gravitational Swarm Intelligence
	Gravitational Swarm for GCP
	Graph coloring problem
	Gravitational Swarm
	Gravitational Swarm for GCP

	Parameter tuning
	GS-GC model parameters
	Experimental results on 30-50 KRG graphs
	Chromatic number

	Goal Radius
	Comfort
	Nom Parametric Tests
	Friedman test
	Friedman test to GS-GC
	Goal Radius
	Comfort

	Post-Hoc test: Nemenyi's test

	Concluding remarks

	Graph Coloring Results
	Experimental design
	Trees and bipartite graphs
	Kuratowski based planar graphs
	Mizuno's 3-colorable
	KRG graphs
	DIMACS graphs
	Test

	Sequential chromatic number determination
	Random Graphs
	Leigthon graphs
	Real Graphs

	Conclusions

	Conclusions and further work
	Future works

	Instances and Generators
	Introduction
	Trees and bipartite graphs
	Trees
	Bipartite

	DIMACS
	Mycielski graphs
	Queens Graphs
	Miles graphs
	Fullins graphs
	Books graphs
	Leighton Graphs

	Random Graphs
	Mizuno's Graphs
	Planar Graphs
	KRG graphs
	Real Graphs

	Graph Coloring Suite
	Bibliography

