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1 Introduction

Dendritic Computing (DC) [1, 3, 5, 6, 7] was introduced asragse, fast, efficient
biologically inspired method to build up classifiers for &iy class problems, which
could be extended to multiple classes. Specifically thelsinguron lattice model
with dendrite computation (SNLDC), has been proved to campyerfect approxi-
mation to any data distribution [4, 7]. However it suffersrfr over-fitting problems.
The results on cross-validation experiments result in yergr performance. We
have confirmed that on a particular database that we haviedtundorevious works
[2, 8,9, 10]. We found that SNLDC showed high sensitivity ety low specificity
in a 10-fold cross-validation experiment. These baselselts are reproduced be-
low in section 3.

In previous computational experiments we have noticedtieSNLDC results
in high sensitivity and very low specificify. We atributegho the fact that the learn-
ing algorithm always tries to guarantee the good classifinaif the class 1 samples.
In this paper we propose to apply a reduction factor on the gizhe hyperboxes
created by the SNLDC learning algorithm. The results showttebtrade off be-
tween sensitivity and specificity, increasing the classidzuracy.

The target application of our work is the detection of Alzher’s Disease (AD)
patients from brain magnetic resonance imaging (MRI) sdaleshave worked over
a database of MRI featuresxtracted from the OASIS database of MRI scans of
AD patients and controls [9, 8, 2]. We selected a balancedfs&D patients and
controls of the same sex, then we performed a Voxel Based ionetry (VBM)
analysis to determine the location of the voxel clusterstrafiscted by the disease.
These voxel clusters were collected in the gray matter satatien of each MRI
scan and used to compute feature vectors for classificdtidghis paper we use the
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mean and standard deviation of the voxel values of theseéectug-Igure 1 shows
the pipeline of the processes performed up to the classificaith the DC system.
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Fig. 1 Pipeline of the process performed, including VBM, featurgaetion and classification by
DC

The structure of the paper is the following. Section 2 introgs the DC classi-
fication system and the training algorithm. Section 3 givesexperimental results
on the AD database. Section 4 gives our conclusions.

2 Dendritic Computing

A single layer morphological neuron endowed with dendritmputation based on
lattice algebra was introduced in [7]. Figure 2 illustratiee structure of a single
output class single layer Dendritic Computing system, wligrdenotes the den-

drite with associated inhibitory and excitatory Weigﬁm"j ,Wilj) from the synapses
coming from thd-th input neuron. The response of the j-th dendrite is as¥dl

5 (¢) =p A A D (6 +u). (1)

iGIJIGLij

wherel € L C {0,1} identifies the existence and inhibitory/excitatory ch&erof
the weight,Lj; = @ means that there is no synapse from ittle input neuron to
the j-th dendrite;p; € {—1,1} encodes the inhibitory/excitatory response of the
dendrite. It has been shown [7] that models based on demddthputation have
powerful approximation properties. In fact, they showeat tinis model is able to
approximate any compact region in higher dimensional Eeelih space to within
any desired degree of accuracy. They provide a construaty@ithm which is
the basis for the present paper. The hard-limiter functibstep 3 is the signum
function. The algorithm starts building a hyperbox encigsall pattern samples of
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Algorithm 1 Dendritic Computing learning based on elimination
Training set T = {(x{c;)x‘f eR"c; €{0,1};¢ :1,...,m}, C={&ce=1}, G =
{&:ce =0}
1. Initializej=1,1; ={1,...n}, P, ={1,...,m}, Lj; = {0,1},
Wiljzf /\ xiz;wﬂ.zf \/ Xié,ViEI
05:1

C{:l

2. Compute response of the current dendBifewith p; = (—1)59~Y:

5 (<€) =p AN DV (6w vEep.

ieljlelj

3. Compute the total response of the neuron:

r<x5> = /j\rk(x5>;£:1,...,m.

k=1
4. 1fvé (f (r <x5>> = cz> the algorithm stops here with perfect classification of taetng set.
5. Create anew dendrife= j+1,Ij=I'=X=E=H=0@,D=C;
6. Selec” such that, =0 andf (1(x")) = 1.
7. u =/\z¢y{\/in:1’Xiy*X1§‘ Ee D}-
8.1 ={i: || =p.genhix={(ix):[¢—%|=néeo}.
9. v(i,xf> €X
a. ity >x thenwd = —( +a-p), B = {1}
b. ifx < thenw = —0¢ —a-p), Hij = {0}
10. |j = |j U|/; Lij = Eij UHij

11. D' = {E eD:vie Ij,—wilj <xf < —wﬂ} If D’ = @ then goto step 2, eld® = D’ goto step
7.

class 1, that isC; = {E [Cs = 1}. Then, the dendrites are added to the structure
trying to remove misclasified patterns of class 0 that fadide this hyperbox. In
step 6 the algorithm selects at random one such misclasgifidrns, computes
the minimum Chebyshev distance to a class 1 pattern andhs@atterns that are
at this distance from the misclassified pattern to build aehlypx that is removed
from theC; initial hyperbox. In this process, if one of the bounds is defined,

Lij # {0,1}, then the box spans to infinity in this dimension. One of theen¢
improvements [1] consists in considering rotations of th#gyns obtained from
some learning process. Then, the response of the dendgiiesis by:

o () = A A D (R(E), +wh).

iEIjIGLij
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whereR denotes the rotation matrix. The process of estimd#man be very time
consuming, it is a local process performed during steps Dtof the learning pro-
cess of algorithm 1.

In this paper we will try to produce a better trade-off betwélge classification
specificity and sensitivity by shrinking the boundariests box created by the al-
gorithm to exclude the region occupied by a misclassified € class 0. We define
a shrinking factora € [0,1) that affects the size of the box created to exclude a
region of space from the initial hyperbox that enclosestelins of class 1. This
shrinking factor is introduced in step 9 of the algorithm heeffect of this strategy
can be appreciated comparing figures 3 and 4. In figure 3 we gimWoxes gen-
erated by the original learning algorithm. Objects of clag®rrespond to crosses.
In figure 4 we show the boxes generated by the learning afgonitith shrinking
factor a = 0.8. It can be appreciated the shrinking algorithm createserboxes
bounding more closely the class 0 items allowing for bettmggalization of the
class 1 results.
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Fig. 2 A single ouput single layer Dendritic Computing system.
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Fig. 3 Resulting boxes of the original DC learning on a syntheticd2itaset
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Fig. 4 Resulting boxes of the DC algorithm with shrinking factor= 0.8.
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3 Experimental results

For each shinking parameter value we have performed a H0cfolss-validation
approach, testing more than 50 partitions of the data toirle@ch performance
estimation.

The summary of the best results is presented in Table 1 andd-§ where
the first row corresponds to the baseline DC algorithm. It lbarappreciated that
the baseline DC has a poor specificity and a high sensitidi§y. systematically
produces low ratios of false negatives, however it prodecksge ratio of false
positives. Per construction, it is biased towards the pesitlassC;. In fact, the
main improvement introduced by the tested approach is aease in specificity.
The DC based approaches have a much higher sensitivityhbintworse speci-
ficity degrades their accuracy performance. Varying thenkhrg factora we ob-
tain varying trade-offs between specificity and sensititjivdecreasing the latter
while increasing the former. The best results are obtairn#dav= 0.8. In this case
the sensitivity is comparable to the results from previoyseeiments on the same
database[2, 10], while the specificity is still below theulesobtained by other state
of art approaches.

| a [Accuracy Sensitivity Specificity

0 58 94 23
0.5 60 81 40
0.53 59 77 42
0.55 64 85 44
0.57 63 83 43
0.6 62 81 44
0.63 64 83 45
0.65] 69 83 54
0.67 64 78 49
0.7 64 79 49
0.73 65 79 52
0.79 65 78 51
0.77 67 78 56
0.8 69 81 56
0.83 66 76 55
0.8 62 73 51
0.87 63 74 52
0.9 63 74 51
0.93 66 74 57
0.95 65 73 57
0.97 61 69 53

Table 1 Summary of best results of validation experiments over ADDM&ature database. First
row corresponds to the original DC algorithm[7].
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Fig.5 DC result varinga anda =0

4 Conclusions

We found empirically, performing cross-validation on azii¢imer’s Disease database
of features computed from MRI scans, that a single layeroreurodel endowed
with Dendritic Computing has poor generalization capébgi The model shows
high sensitivity but poor specificity. In this paper we havegosed a simple change

in the learning algorithm that produces a significative éae in performance in
terms of accuracy, obtaining a better trade-off betweesigeity and specificity.
This strategy could be combined with other techniques t@eoé further the per-
formance of DC.
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