
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright



Author's personal copy

Hybrid dendritic computing with kernel-LICA applied to Alzheimer’s disease
detection in MRI

Darya Chyzhyk, Manuel Graña !, Alexandre Savio, Josu Maiora

Facultad de Informatica, Paseo Mauel Lardizabal 1, 20018 San Sebastian, Spain

a r t i c l e i n f o

Available online 4 August 2011

Keywords:
Dendritic computing
Lattice computing
Alzheimer’s disease
Kernel method
Lattice Independent Component Analysis

a b s t r a c t

Dendritic computing has been proved to produce perfect approximation of any data distribution. This
result guarantees perfect accuracy training. However, we have found great performance degradation
when tested on conventional k-fold cross-validation schemes. In this paper we propose to use Lattice
Independent Component Analysis (LICA) and the Kernel transformation of the data as an appropriate
feature extraction that improves the generalization of dendritic computing classifiers. We obtain a big
increase in classification performance applying with this schema over a database of features extracted
from Magnetic Resonance Imaging (MRI) including Alzheimer’s disease (AD) patients and control
subjects.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dendritic computing (DC) [2,14,18,19,21] was introduced as a
simple, fast, efficient biologically inspired method to build up
classifiers for binary class problems, which could be extended to
multiple classes. Specifically the single-neuron lattice model with
dendrite computation (SNLDC) has been proved to compute a
perfect approximation to any data distribution [17,21]. However,
it suffers from over-fitting problems. The results on cross-valida-
tion experiments result in very poor performance. We have
confirmed that on a particular database that we have studied in
previous works [4,22,23], we found that SNLDC showed high
sensitivity but very low specificity in a 10-fold cross-validation
experiment. These baseline results are reproduced below in
Section 5. To improve the method, [2] proposed to compute the
optimal rotation of each of the hyperboxes by some optimization
method at each step of the training algorithm. This procedure is
computationally very expensive and does not guarantee optimal
generalization of classification performance. It depends on the
local distribution of the data, as a local kernel transformation
whose parameters must be fitted locally.

In this paper we propose to perform a transformation of
the data which is appropriate for later DC based classification
systems, following the trend of innovation through hybrid
system design [1,3]. This transformation is composed of a kernel
transformation [24] followed by dimension reduction process
realized by Lattice Independent Component Analysis (LICA). The

composite transformation is the Kernel-LICA approach. The kernel
transformation is intended to produce a high dimensional feature
representation of the data that eases the subsequent processes.
The dimension reduction phase could be realized by other
methods, such as Principal Component Analysis (PCA), which
has also been tested in this paper. Notice that both dendritic
computing and LICA are lattice computing [8] algorithms.

The target application of our work is the detection of Alzheimer’s
disease (AD) patients from brain magnetic resonance imaging (MRI)
scans. We have worked over a database of MRI features1 extracted
from the OASIS database of MRI scans of AD patients and controls
[23,22,4]. Specifically, we selected from the OASIS databases a
subset of AD patients and controls of the same sex. This subsample
from OASIS contains the same number of AD patients and controls,
therefore is a well class balanced sample. Then we performed a
Voxel Based Morphometry (VBM) analysis to determine the location
of the voxel clusters most affected by the disease. These voxel
clusters were collected in the gray matter segmentation of each MRI
scan and used to compute feature vectors for classification. In this
paper, the feature vectors are built gathering the mean and standard
deviation of the voxel gray matter segmentation values of all and
each of the detected clusters.

The structure of the paper is the following. Section 2 reviews
the baseline dendritic approach used. Section 3 reviews the LICA
approach. Section 4 describes our application of the kernel trick to
LICA. Section 5 gives our experimental results on the AD database.
Section 6 gives our conclusions.
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2. Dendritic computing

A single layer morphological neuron endowed with dendrite
computation based on lattice algebra was introduced in [21].
Fig. 1 illustrates the structure of a single output class single layer
dendritic computing system, where Dj denotes the dendrite with
associated inhibitory and excitatory weights ðw0

ij,w
1
ijÞ from the

synapses coming from the i-th input neuron. The response of the
j-th dendrite is as follows:

tjðxxÞ ¼ pj
^

iA Ij

^

lA Lij

ð%1Þ1%lðxxi þwl
ijÞ, ð1Þ

where lALijDf0,1g identifies the existence and inhibitory/excita-
tory character of the weight, Lij ¼ | means that there is no synapse
from the i-th input neuron to the j-th dendrite; pjAf%1,1g
encodes the inhibitory/excitatory response of the dendrite. It
has been shown [21] that models based on dendritic computation
have powerful approximation properties. In fact, they showed
that this model is able to approximate any compact region in
higher dimensional Euclidean space to within any desired degree
of accuracy. They provide a constructive algorithm which is the
basis for the present paper, which is given in Algorithm 1. Assume
that we are given a collection of m pairs of patterns and class
labels ðxx,cxÞxxARn,cxAf0,1g. The hard-limiter function of
step 3 is the Heaviside function. The algorithm starts building a
hyperbox enclosing all pattern samples of class 1, that is,
C1 ¼ fx : cx ¼ 1g. Then, the dendrites are added to the structure
trying to remove misclassified patterns of class 0 that fall inside
this hyperbox. In step 6 the algorithm selects at random one such
misclassified pattern, computes the minimum Chebyshev dis-
tance to a class 1 pattern and uses the patterns that are at this
distance from the misclassified pattern to build a hyperbox that is
removed from the C1 initial hyperbox. In this process, if one of the
bounds is not defined, Lijaf0,1g, then the box spans to infinity in
this dimension. One of the recent improvements [2] consists in
considering rotations of the patterns obtained from some learning
process. Then, the response of the dendrite is given by:

tjðxxÞ ¼ pj
^

iA Ij

^

lA Lij

ð%1Þ1%lðRðxxÞiþwl
ijÞ, ð2Þ

where R denotes the rotation matrix. The process of estimating R
can be very time consuming, it is a local process performed during
steps 7–10 of the learning process of Algorithm 1. Following this
idea, we propose and test in this paper that the enhancement of
the single layer neuron model with dendritic computation per-
formance could be obtained from the transformation of the data
using the kernel approach in combination with a lattice comput-
ing based feature extraction process, the LICA.

Algorithm 1. Dendritic computing learning based on elimination.

Training set T ¼ fðxx,cxÞxxARn,cxAf0,1g; x¼ 1, . . . ,mg,

1. Initialize j¼1, Ij ¼ f1, . . .ng, Pj ¼ f1, . . . ,mg, Lij ¼ f0,1g,

w1
ij ¼%

^

cx ¼ 1

xxi ;w
0
ij ¼%

_

cx ¼ 1

xxi ,8iA I

2. Compute response of the current dendrite Dj, with
pj ¼ ð%1Þsgnðj%1Þ:

tjðxxÞ ¼ pj
^

iA Ij

^

lALij

ð%1Þ1%lðxxi þwl
ijÞ,8xAPj:

3. Compute the total response of the neuron:

tðxxÞ ¼
ĵ

k ¼ 1

tkðxxÞ; x¼ 1, . . . ,m:

4. If 8xðf ðtðxxÞÞ ¼ cxÞ the algorithm stops here with perfect
classification of the training set.

5. Create a new dendrite j¼ jþ1, Ij ¼ I0 ¼ X ¼ E¼H¼ |, D¼ C1

6. Select xg such that cg ¼ 0 and f ðtðxxÞÞ ¼ 1.

7. m¼
V

xag
!Wn

i ¼ 1

""xgi %xxi
"" : xAD

#
.

8. I0 ¼
!
i :

""xgi %xxi
""¼ m,xAD; X ¼

!
ði,xxi Þ :

""xgi %xxi
""¼ m,xAD

#
.

9. 8ði,xxi ÞAX

(a) if xgi 4xxi then w1
ij ¼%xxi , Eij ¼ f1g

(b) if xgi oxxi then w0
ij ¼%xxi , Hij ¼ f0g

10. Ij ¼ Ij [ I0; Lij ¼ Eij [ Hij

11. D0 ¼ fxAD : 8iA Ij,%w1
ijoxxi o%w0

ijg. If D
0 ¼ | then goto step 2,

else D¼D0 goto step 7.

3. LICA

Lattice Independent Component Analysis is based on the lattice
independence discovered when dealing with noise robustness in
Morphological Associative Memories [20]. Works on finding lattice
independent sources (aka endmembers) for linear unmixing started
on hyperspectral image processing [11,16]. Since then, it has been
also proposed for functional MRI analysis [10] among other.

Under the Linear Mixing Model (LMM) the design matrix is
composed of endmembers which define a convex region covering
the measured data. The linear coefficients are known as fractional
abundance coefficients that give the contribution of each end-
member to the observed data:

y¼
XM

i ¼ 1

aisiþw¼ Saþw, ð3Þ

where y is the d-dimension measured vector, S is the d&Mmatrix
whose columns are the d-dimension endmembers si,i¼ 1, . . . ,M, a
is the M-dimension abundance vector, and w is the d-dimension
additive observation noise vector. Under this generative model,
two constraints on the abundance coefficients hold. First, to be
physically meaningful, all abundance coefficients must be non-
negative aiZ0,i¼ 1, . . . ,M, because the negative contribution is
not possible in the physical sense. Second, to account for the
entire composition, they must be fully additive

PM
i ¼ 1 ai ¼ 1: As a

side effect, there is a saturation condition air1,i¼ 1, . . . ,M,
because no isolate endmember can account for more than the
observed material. From a geometrical point of view, these
restrictions mean that we expect the endmembers in S to be an
Affine Independent set of points, and that the convex region
defined by them covers all the data points.

The Lattice Independent Component Analysis (LICA) approach
assumes the LMM as expressed in Eq. (3). Moreover, the equivalenceFig. 1. A single output single layer dendritic computing system.
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between affine independence and strong lattice independence [15]
is used to induce from the data the endmembers that compose the
matrix S. Briefly, LICA consists of two steps:

1. Use an endmember induction algorithm (EIA) to induce from
the data a set of strongly lattice independent vectors. In our
works we use the algorithm described in [6,7,11,10]. These
vectors are taken as a set of affine independent vectors that
forms the matrix S of Eq. (3).

2. Apply the Full Constrained Least Squares estimation [5,12,13] to
obtain the abundance vector according to the conditions for LMM.

The advantages of this approach are (1) that we are not imposing
statistical assumptions to find the sources, (2) that the algorithm
is one-pass and very fast because it only uses lattice operators and
addition, (3) that it is unsupervised and incremental, and (4) that
it can be tuned to detect the number of endmembers by adjusting
a noise-filtering related parameter. When M5d the computation
of the abundance coefficients can be interpreted as a dimension
reduction transformation, or a feature extraction process. It is
under this view that we will use LICA in the experimental works
described in Section 5.

3.1. Endmember induction algorithm

The EIA that we introduce in this section is a heuristic that is
somehow simpler and faster than the formulations of the EIA
algorithm proposed and used in [11,9]. Let us denote fxiARd :
i¼ 1, . . . ,ng a set of input patterns. Vectors l! and r! are, respec-
tively, the mean vector and the vector of standard deviations
computed component-wise over the data sample, a the filtering
factor related to data variability, and E the set of already discovered
endmembers. For each input vector, first, the algorithm tests that
the input vector is not too similar to the already discovered
endmembers, we test for each component independently that the
euclidean distance between input and endmembers is lower than
the corresponding component arj

!. The gain parameter a controls
the amount of flexibility in the discovering of new endmembers. It
determines if a vector is interpreted as a random perturbation of an
already selected endmember. It has a great impact on the number of
endmembers found, where low values imply large number of
endmembers. Lattice independence is tested against the recall
provided by the LAAM built from E. strong lattice independence is
verified testing the max- or min-dominance on the set of end-
members. The algorithm runs only once over the data. Discussion of
its theoretical justification can be found in [11,9] and will not be
reproduced here. The detailed description of the steps in the
heuristic algorithm is presented as Algorithm 2. In this algorithm
we use the symbol ¼ ¼ to denote a Matlab-like component-wise
vector equality test operator which returns a vector of 0’s and 1’s,
where 0 corresponds to inequality and 1 to equality.

Algorithm 2. A LAAM based incremental endmember induction
algorithm.

1. Shift the data sample to zero mean fxci ¼ xi%l!; i¼ 1, . . . ,ng.
2. Initialize the set of endmembers with the first data sample

E¼ fe1 ¼ xc1g. The initial set of endmember sample indices is
I¼ f1g.

3. Construct the lattice auto-associative memory MEE based on
the set of endmembers E.

4. For each input data vector xci
(a) If there is any eAE such that 8j : Jxcij%ejJoarj

! discard xci ,
otherwise proceed to test SLI

(b) If xci ¼MEE xci then discard xci because it is lattice
dependent on the already discovered endmembers.

(b) Test max/min-dominance on the enlarged set of endmem-
bers E0 ¼ E [ fxci g to ensure SLI,
(i) c1 ¼ c2 ¼ 0
(ii) for i¼ 1, . . . ,Kþ1
(iii) s1 ¼ s2 ¼ 0

A. for j¼ 1, . . . ,Kþ1 and ja i d¼ ei%ej;
m1 ¼max ðdÞ; m2 ¼min ðdÞ. s1 ¼ s1þðd¼ ¼m1Þ,
s2 ¼ s2þðd¼ ¼m2Þ.

B. c1 ¼ c1þðmaxðs1Þ ¼ ¼ KÞ or
c2 ¼ c2þðmaxðs2Þ ¼ ¼ KÞ.

(iv) If c1 ¼ Kþ1 or c2 ¼ Kþ1 then E0 is a set of SLI vectors,
go to 3 with the enlarged set of lattice sources and
resume exploration with the next input.

5. The output set of endmembers is the set of original data
vectors ffðiÞ : iA Ig corresponding to the vectors selected as
members of E.

4. Kernel approaches

The kernel transformation has been found very useful in
statistics and pattern recognition applications [24]. A kernel is a
function:

kðx,zÞ ¼/fðxÞ,fðzÞS, ð4Þ

for all x,zAX, where XDRn is the input pattern space, and f is a
mapping into an (inner product) feature space F:

f : X-F: ð5Þ

Kernel functions make possible the use of feature spaces with an
exponential or even infinite number of dimensions without
explicitly computing the features. They are combined with other
algorithms as a preprocessing step of the data. In the literature
they have allowed to extend linear efficient solutions to non-
linear problems. For instance, consider the linear regression
problem of finding the linear function gðxÞ ¼/w,xS that best
interpolates a given training set S¼ fðx1,y1Þ, . . . ,ðxm,ymÞg with
yiAR, solved minimizing the function f ðx,yÞ ¼ 9y%/w,xS9 by
the well-know least squares solution w¼ ðXX0Þ%1X0y, where X is
the matrix composed of all the sample input vectors, and y the
vector composed of all the labels in the sample. The non-linear
extension can be obtained considering a transformation of the
sample into the feature space Ŝ ¼ fðfðx1Þ,y1Þ, . . . ,ðfðxmÞ,ymÞg: The
function to be minimized is f ðx,yÞ ¼ 9y%/w,fðxÞS9. Using a dual
approach, the predictive function is reformulated as gðxÞ ¼
y0ðG%lIÞ%1k, where G¼XX0 with entries Gij ¼/fðxiÞ,fðxjÞS, and
k contains the values ki ¼/fðxiÞ,fðxÞS: That is, all computations
can be performed on the values of the kernel functions, solving
the problem with the same procedure employed to solve the
linear problem. The kernel matrix G is the central structure of all
the kernel based approaches. For instance, Principal Component
Analysis (PCA) of the kernel matrix can be interpreted (with some
corrections [24]) as a PCA of the data in feature space. We have
followed the approach as a heuristic, applying also the LICA on the
kernel matrix. The obtained success would indicate the need to
examine more closely this approach. Finally, we define the
Gaussian kernel that will be used in the experiments:

kðx,zÞ ¼ exp ð%Jx%zJ2=2s2Þ: ð6Þ

5. Experimental results

Fig. 2 describes the combinations of systems that we have
tested over the AD versus controls database of feature vectors.
Each of the possible paths in the graph from the OASIS data up to
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the classification results corresponds to a combination of systems
tested. For each combination we have explored the corresponding
parameters in a systematic way, using a 10-fold cross-validation
approach, repeated more than 50 times to obtain each perfor-
mance estimation value in the figures and tables. The 10-fold
cross-validation creates a random partition into 10 equally sized
subsets of the sample, then each subset in turn is considered as
the test data while the remaining data samples are used to build
the classifier. Performance measures are computed as the average
of the performances obtained in all repetitions of the training and
testing process. Of course, the given values always refer to the test
sample data partition, not to the training. Computed performance
measures are accuracy, sensitivity and specificity: Accuracy is
computed as the ratio of correct classifications. Sensitivity is
computed as the ratio of true positives to the total number of
positive samples. Specificity is computed as the ratio of the true
negatives to the total number of negative samples.

We tested the application of Principal Component Analysis (PCA)
to the dimensional reduction of the data previous to DC, the
application of LICA to the same end, the transformation of the data
with a Gaussian kernel previous to DC or to the application of PCA or
LICA. The lower path in Fig. 2 corresponds to the kernel-LICA
approach. In the experiments we explored the effect of the diverse
parameters. For PCA we computed transformations with up 10
eigenvectors, accounting for 99% of the accumulated eigenvalues.
For LICA we tested values in the ranges aA ½0:01,0:09( [ ½0:1,0:9( [
½1,10( with corresponding uniform sampling in these intervals. The
Gaussian kernel parameter was computed as s¼ 10k with
k¼[%3,1] sampled uniformly in this interval.

In Fig. 3 we plot the result of PCA-DC as a function of the
number of eigenvectors. The average accuracy best result is
obtained with one eigenvector and decreases dramatically after
that. Fig. 4 shows the plot of the LICA-DC results as a function of
the a parameter that determines the number of endmembers. The
best results are for the higher values, which imply less end-
members. Fig. 5 shows the plot of the DC average accuracy when
applied to the Gaussian Kernel transformation of the data with
varying s parameter. The kernel trick seems to work against the
DC giving systematically poor results, regardless of the value of its
s parameter. The results of the combination of the Gaussian

kernel and PCA are shown in Fig. 6 as surface depending on the
number of eigenvectors selected and the value of the s parameter.
It can be appreciated that the results are highly sensitive to the
kernel parameter, low values giving better results. Overall the
kernel PCA-DC transformation improves the results of the PCA-DC
combination, although the best result is lower for the Kernel
PCA-DC than for the PCA-DC. Finally, Fig. 7 shows the results of
the combination of the Gaussian kernel preprocessing with the
LICA feature extraction for DC. Values improve with low values of
s and moderate a. Both 3D surface responses in Figs. 6 and 7 have
embedded the flat surface corresponding to the baseline DC result

Fig. 2. The experimental exploration.

Fig. 3. PCA-DC results as a function of the number of eigenvectors.

Fig. 4. LICA-DC results as a function of the noise filter parameter a.

Fig. 5. DC applied to Gaussian Kernel transformation of the data.
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of 58% accuracy. Therefore the observed peaks correspond to
parameter combinations where the combination of systems
improves the baseline DC.

Fig. 8 presents a summary plot of the results of all the
approaches tested against the value of their respective parameters.
The plot shows that some of the approaches do not improve in any
case the baseline dendritic computing result. The best result is
obtained when we apply LICA to a Gaussian kernel transformation of
the data. Also we found that the bare application of LICA to the data

gives better results than PCA, which only improves DC when
reducing the data to one coefficient. The summary of the best
results is presented in Table 1 where it can be appreciated that the
baseline DC has a poor specificity and a high sensitivity. DC
systematically produces low ratios of false negatives, however, it
produces a large ratio of false positives. Per construction, it is biased
towards the positive class C1. In fact, the main improvement
introduced by the tested approaches is an increase in sensitivity.
Comparing with previous results on this same database [4,22], we
find that the Support Vector Machine (SVM) approach obtains
comparable values of sensitivity and specificity. The DC based
approaches have a much higher sensitivity, but their worse speci-
ficity degrades their accuracy performance.

6. Conclusions

We found empirically, performing cross-validation on an
Alzheimer’s Disease database of features extracted from MRI
scans that a single layer neuron model endowed with dendritic
computing has poor generalization capabilities. The model shows
high sensitivity but poor specificity. In this paper we have proposed
the application of a composition of processes to enhance the model
generalization properties. Specifically, we propose to perform a
Lattice Independent Component Analysis on a kernel matrix gener-
ated applying a Gaussian kernel as the appropriate feature extrac-
tion for the dendritic computing model. Our approach improves
over the application of PCA to the data and to the kernel matrix.
Future work can be addressed to develop the theory of the
combination of the kernel method with the LICA process.
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approach on Alzheimer’s disease detection on MRI, in: J. Mira, J.M. Ferrández,
J.R. Alvarez, F. dela Paz, F.J. Tolede (Eds.), Bioinspired Applications in Artificial
and Natural Computation, Lecture Notes in Computer Science, vol. 5602,
2009, pp. 114–123.

[23] A. Savio, M. Garcı́a-Sebastián, C. Hernández, M. Graña, J. Villanúa, Classifica-
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