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Introduction

General motivations

● To explore the use of innovative Computational 
Intelligence techniques for vision based 
localization and mapping for mobile robots.

– Based on Lattice Computing, in the form of several 
applications of Lattice Associative Memories 
(LAM).

– Based on Hybrid Systems combining Competitive 
Neural Networks and Evolution Strategies.

● Realize a proof-of-concept physical experience 
on the vision based control of a Linked Multi-
Component Robotic System (MCRS)
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Introduction

Objectives

● Test the capacity of LAMs for landmark view 
storing and recognition through retrieval in a 
real robot implementation.

● Test the usefulness of the convex coordinates 
extracted with LAMs as feature vectors for view 
classification in a robotic mapping context.

● Test the usefulness of the endmembers induced 
with LAMs as landmarks in an SLAM context, 
developing the adequate tools for its on-line 
use.
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Introduction

Objectives

● Develop an hybrid approach to the use of 3D 
data provided by innovative 3D ToF cameras for 
ego-motion estimation.

● Demonstrate a physical realization of vision 
based control for a multi-robot linked system in 
the form of a hose transportation system.
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Lattice Computing for localization and mapping

Motivations

● Lattice Theory has been identified as a central 
concept for a whole family of methods and 
applications in Computational Intelligence.

● Application of the group's background 
knowledge.

● Part of group's ongoing work:
– Hyper-spectral imaging.

– Medical Imaging (fMRI).

– Robotic mapping.
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Lattice Computing for localization and mapping

Approaches

● Lattice Heteroassociative Memories (LHAM) for 
visual mapping and localization.

● LAMs for feature extraction in landmark 
recognition.

● LAMs for unsupervised landmark selection for 
SLAM.
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Lattice Computing for localization and mapping

LHAM for visual mapping 
and localization

● Continuation of a previous work.
– Use LHAM for the storing and retrieval of views 

as landmarks.

● Implementation in a real robotic platform.
– Build topological, non-exhaustive maps.

– Real-time operation.
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Lattice Computing for localization and mapping

LHAM for visual mapping 
and localization

Pioneer robotic platform.
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Lattice Computing for localization and mapping

LHAM for visual mapping 
and localization

● Real-time, real-robot issues:
– Computational cost: 

● Binary images: Dark and bright spots used as 
anchors.

– LHAM size limitation:
● Multi-memory map: each position stored in one 

different LHAM.

– Robustness:
● Dual LHAM memories for image storing.
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Lattice Computing for localization and mapping

LHAM for visual mapping 
and localization

● Mapping and localization as separate 
processes.

– Map was built in a learning walk.

● Real time experiment successful.
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Lattice Computing for localization and mapping

Approaches

● Lattice Heteroassociative Memories (LHAM) for 
visual mapping and localization.

● LAMs for feature extraction in landmark 
recognition.

● LAMs for unsupervised landmark selection for 
SLAM.
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Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition

● Use the convex coordinates as image feature 
vector for landmark recognition.

● The convex coordinates are computed through 
the spectral unmixing from the vertices of the 
convex region which covers the data.

● Vertices are induced as a Lattice Independent 
set. 

– LAM-based Endmember Induction Heuristic 
Algorithm (EIHA).

– From the columns of the LAM.
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Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition

● Induction of the endmembers from the data sample.

● Feature extraction: convex coordinates.

● Landmarks selected by hand.

– Each landmark identifies a “region” composed of 
several images.

● Image classification: classes correspond to the 
landmark regions.
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Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition

● Localization:
– Images are classified on the regions.

– Feature vectors: convex coordinates obtained 
by an unmixing process from the training set's 
endmembers.

– k-NN classifier.
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Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition

Experimental validation:
● Pre-recorded data sets:

– 6 walks over the same path.

– 1st used as training set.

● Landmarks selected as places of practical 
relevancy.

● Odometry used for validation.
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Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition
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#end Train Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Av. 

13 0.94 0.81 0.76 0.72 0.73 0.67 0.772

14 0.94 0.85 0.77 0.69 0.78 0.71 0.79 

13 0.94 0.84 0.75 0.70 0.75 0.74 0.787

14 0.94 0.83 0.71 0.63 0.73 0.67 0.752

12 0.94 0.85 0.79 0.69 0.78 0.72 0.795

12 0.93 0.80 0.70 0.67 0.69 0.70 0.748

12 0.94 0.83 0.71 0.59 0.70 0.66 0.738

12 0.93 0.82 0.76 0.69 0.74 0.66 0.767

14 0.94 0.79 0.73 0.64 0.70 0.63 0.738

12 0.92 0.79 0.70 0.63 0.65 0.60 0.715

Av. 0.936 0.821 0.738 0.665 0.725 0.676 0.76 

PCA 10 0.96 0.86 0.78 0.66 0.76 0.73 0.792

Landmark recognition success rate based on the convex coordinates representation of the 
navigation images for several runs of the EIHA with α = 5  and using 3-NN.

Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition
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#end Train Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Av. 

5 0.96 0.79 0.74 0.64 0.71 0.61 0.742

10 0.96 0.80 0.76 0.61 0.80 0.72 0.775

15 0.96 0.80 0.74 0.66 0.79 0.69 0.773

20 0.96 0.80 0.76 0.65 0.81 0.67 0.775

25 0.96 0.78 0.72 0.62 0.74 0.68 0.75

30 0.96 0.81 0.73 0.60 0.75 0.69 0.757

Av. 0.96 0.797 0.742 0.63 0.767 0.677 0.762

PCA 10 0.96 0.86 0.78 0.66 0.76 0.73 0.792

PCA 30 0.96 0.87 0.77 0.64 0.78 0.78 0.8

Landmark recognition success rate based on the convex coordinates representation of the 
navigation images for several numbers of endmembers extracted from the LAM columns 
and using 3-NN.

Lattice Computing for localization and mapping

LAMs for feature extraction 
in landmark recognition
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Lattice Computing for localization and mapping

Approaches

● Lattice Heteroassociative Memories (LHAM) for 
visual mapping and localization.

● LAMs for feature extraction in landmark 
recognition.

● LAMs for unsupervised landmark selection for 
SLAM.
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Lattice Computing for localization and mapping

LAMs for unsupervised 
landmark selection for SLAM

Could be the induced endmembers used as 
suitable landmarks?
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Lattice Computing for localization and mapping

LAMs for unsupervised 
landmark selection for SLAM

● Induced endmembers:
– They correspond with physical positions.

– They seem to be well distributed along the path.

– They would be good recognition anchors.
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Lattice Computing for localization and mapping

LAMs for unsupervised 
landmark selection for SLAM

● Full dataset not available from the start:
– EIHA must be modified to operate on-line.

– Convex coordinates can not be used as feature 
vectors because endmembers change along 
the process.

● Some other dimensionality reduction method 
required: DCT.



  26

Lattice Computing for localization and mapping

LAMs for unsupervised 
landmark selection for SLAM
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Lattice Computing for localization and mapping

LAMs for unsupervised 
landmark selection for SLAM

Train W1 W2 W3 W4 W 5 Av. 

Path 1 0.83 0.75 0.76 0.60 0.69 0.64 0.742

Path 2 0.84 0.68 0.74 0.76 0.59 0.67 0.775

Path 3 0.80 0.66 0.48 0.76 0.71 0.65 0.773

Path 4 0.80 0.49 0.39 0.76 0.41 0.67 0.775

Path 5 0.81 0.72 0.69 0.77 0.63 0.57 0.75

Landmark recognition success rate based on the DCT low frequencies.
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Lattice Computing for localization and mapping

Chapter conclusions

● Confirmed the theoretical and simulation results 
of previous works about using LHAM for map 
storing.

● Convex coordinates of the data points based on 
the endmembers induced by the EIHA algorithm 
can be used as features for landmark 
recognition, with similar performance to PCA.

● Unsupervisedly induced endmembers are 
suitable as landmarks.
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Localization from 3D imaging

Motivations

● Use of new ToF 3D cameras.
● Application of Computational Intelligence 

approaches to robot localization using this 3D 
data.

– Hybrid neuro-evolutionary system.

● Task: ego-motion estimation.
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Localization from 3D imaging

Neuro-evolutionary system

1) Preprocessing step.

2) Competitive Neural Network module.

3) Evolution Strategy module.
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Localization from 3D imaging

Sensor data

Amplitude Image Distance Image
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Localization from 3D imaging

Sensor data
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Localization from 3D imaging

Preprocessing

● Filtering: Reliability coeficient Ri= I i×Di
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Localization from 3D imaging

Competitive Neural Network module

● Neural Gas network used to fit a codebook S to 
the point cloud:

– Keeps the spatial shape of the cloud.

– Reduces the data amount to a fixed, 
manageable size.
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Localization from 3D imaging

Competitive Neural Network module
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Localization from 3D imaging

Evolution Strategy module

● Objective: compute the displacement between 
positions P

t
 and P

t+1
 as the transformation 

between S
t
 and S

t+1
.

● (μ/ρ+λ) Evolution Strategy.



  38

Localization from 3D imaging

Evolution Strategy module

● Evolves an estimation         of the 
transformation matrix.

● Position estimation:

T t1=[cos t1 −sin t1  xt1

sin  t1 cos t1  y t1

0 0 1 ]
S t1≈T t1×S t

T t1

P t1= T t1× T t×...× T 1×P0
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Localization from 3D imaging

Evolution Strategy module
Given the previous position estimation.

The robot moves to a new physical position P
t+1

. 

1. Take measurements from the camera.

2. Filter the cloud of 3D points.

3. Obtain S
t+1

 fitting the Neural Gas network to the cloud of filtered 3D points.

4. Generate an initial population H
0
.

5. Iterate until stopping condition:

5.1. Select a parent population from previous population.

5.2. Stop if convergence conditions are matched. Continue otherwise.

5.3. Generate the offsprings by recombination and mutation. 

5.4. For each offspring:

5.4.1.Build the transformation matrix and compute the prediction of S
t+1

.

5.4.2.Calculate fitness as the matching distance between observed and
 predicted codebook.

5.5. Build population H
k
 as the union of parent and offspring populations.

6. Build the estimation of the transformation matrix from the best hypotesis in the last population.

7.Compute position estimation at time t+1.
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Localization from 3D imaging

Experimental validation

● Recorded 3D datasets.
● Big, empty room.
● Reconstruct the path followed by the robot.
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Localization from 3D imaging

Experimental validation
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Localization from 3D imaging

Experimental validation
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Localization from 3D imaging

Experimental validation

Algorithm Mean error Acc. error Final error

Odometry 2585 695602 5255

ES 2952 794266 3881

Zinsser 12711 3419386 10291

Besl 9300 2501695 3017

Chow 6893 1854391 2999

Jost 8738 2350702 8478
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Algorithm
100 

Codevectors 
400 

Codevectors 

Besl 84 394

Chow 5224 14936

ES 9564 N/A 

ES kd-trees 277 964

Jost 63 257

Zinsser 50 389

Localization from 3D imaging

Experimental validation
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Localization from 3D imaging

Chapter conclusions

● Path reconstruction comparable to or even 
improving the one provided by odometry.

● Comparisons with state of the art registration 
algorithms:

– Overall slower.

– Faster than other evolutionary approaches.

– Better path reconstruction.

● Drawbacks identified:
– Slightly overlapping frames.

– Aperture problem.
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Multi-robot visual control

Motivations

● Identify and test the special features of Linked 
Multi-component Robotic Systems.

– Realization of a proof-of-concept of a 
paradigmatic case: a multi-robot hose 
transportation system.

● Part of a new direction of research efforts.
● Open a wide new field of research.
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Multi-robot visual control

Multi-robot hose transportation
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Multi-robot visual control

Basic task

To perform the transportation of the 
hose in a straight line in an environment 
without obstacles from an initial arbitrary 
configuration of hose and robots.
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Multi-robot visual control

Basic task

● Non-trivial problem:
– Several robot's control.

– Keep robot's formation.

– Keep hose's shape.

– Robot's physical embodiment limitations.

● Building block for more sophisticated tasks.
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Multi-robot visual control

Perception

● Perceive the robot's position and hose state.
● Centralised perception.
● Controlled environment:

– Bright colored background.

– Blue colored robots.

– Dark colored hose.

● Output:

– Regions containing the robots: R = {R
1
,..., R

n
}.

– Hose's segments: S = {S
1
,...,S

n-1
}.
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Multi-robot visual control

Control heuristic

● Centralised control.
– Each robot's commands computed 

independently.

● “Follow the leader” strategy.
● Control commands dependent of:

– Leader's orientation.

– In front hose segment's state.
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Multi-robot visual control

Control heuristic

● Hose curvature c.
● Three states:

– c too low: Rear robot takes 
fast speed.

– c too high: Rear robot stops.

– c between limits: Keep 
cruise speed.
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Multi-robot visual control

Experiment
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Multi-robot visual control

Experiment
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Multi-robot visual control

Chapter conclusions

● Successful implementation of the basic task of 
a Linked MCRS for hose transportation.

● First step to more complex tasks.
● Differences with Distributed MCRS:

– Hose can be an obstacle for the robots.

– Hose can drag the robots.

– Hose imposes restrictions to the robot's 
movements.

– Hose is an additional element whose state must 
be measured.
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Outline
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Overall conclusions

Computational Intelligence provides innovative 
tools which can be applied with success to 
classical problems in vision based mobile 
robotics.

– Lattice Computing used for landmark storing, 
recognition and selection.

– Hybrid neuro-evolutionary systems for 
localization.

– Vision based multi-robot control.
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Thank you for your attention.
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